Structural and electronic properties of tin clathrate materials

Charles W. Myles
Department of Physics, Texas Tech University, Lubbock, Texas 79409-1051

Jianjun Dong
Physics Department, Auburn University, Auburn, Alabama 36849-5311

Otto F. Sankey
Department of Physics and Astronomy and Materials Research Center, Arizona State University, Tempe, Arizona 85287

I. INTRODUCTION

The two common solid phases of elemental tin (Sn) are gray tin and white tin. Gray tin, also known as α-Sn, has two atoms per primitive face-centered cubic (fcc) cell in the diamond crystal structure. White-tin, also known as β-Sn, has two atoms per primitive body-centered tetragonal (bct) cell. Another solid phase of Sn is the high-pressure γ-Sn phase, which also has a bet crystal structure, but with four atoms per primitive cell.1 Similar to the lighter group-IV (B) elements C, Si and Ge, Sn atoms can form sp^3 tetrahedral bonds and the diamond structure α-Sn is the stable ground state phase at low temperatures. In contrast to the diamond structure phases of C, Si, and Ge, which are well known semiconductors α-Sn is a semimetal. Tin is also able to form octahedral bonds. Both β-Sn and γ-Sn are octahedrally bonded, and they are metals. It is interesting to note that the minimum binding energy of the β-Sn phase is energetically very close to that of the ground state, α-Sn phase, despite the significant difference in the bonding in the two phases. The entropy driven $\alpha \rightarrow \beta$ phase transition proceeds at a temperature of 13 °C at ambient pressure.2

Tin atoms, as well as atoms of Si and Ge, can also form novel open-framework cagelike solids called clathrates. In these structures, all internal cages are strongly bonded, with all atoms in fourfold connected, sp^3-like configurations. The clathrate frameworks were first discovered in the hydrate (ice) materials.3 Starting in the mid 1960’s, it was found that Si and Ge can form clathrate frameworks with guest metal atoms (Na or K) encapsulated into the “cages” of the structure.4-9 Since then, a wide variety of Si and Ge clathrates have been synthesized and characterized and the understanding of these novel materials is advancing rapidly. Silicon clathrates have been the most theoretically studied of this material class. An early theoretical study of the Si clathrates was performed by Adams et al.,10 who used a local-orbital tight-binding-like LDA method. That study focused on the pure Si clathrates. Other calculations have been performed on Si clathrates by several groups.11-15 Recently, calculations have also been performed on Ge clathrates by two of us16,17 and by others.18 The Sn clathrates have received less attention than their Si and Ge counterparts and only recently have been synthesized.19-21 Here, we report ab initio, density functional planewave pseudopotential calculations of the structural and electronic properties of several Sn-based clathrate materials.

The first motivation for the present work is to obtain a systematic understanding of the intrinsic properties of the (as yet unsynthesized) clathrate phases of pure (guest-free) elemental Sn, and their relation to the “compact” α-Sn phase. A theoretical study of the pristine Sn clathrates is the first step in understanding the more complex laboratory-synthesized Sn clathrate compounds. Our calculations show that the energy cost to form clathrate phases compared to the α phase is small for Sn; less than the analogous energy increase in the Si clathrates but similar to that in the Ge clathrates. In addition, we find that the “band-gap opening” effect previously found in the Si and Ge clathrates is also present in the Sn clathrates; our results show that both the type-I (Sn_{30}) and type-II (Sn_{136}) clathrate phases are semiconductors. This has the important and interesting consequence that, if they could be synthesized, the pure Sn clathrates would be the first semiconducting materials made from elemental Sn.

Most laboratory-synthesized group-IV (B) clathrates, including those based on Sn, are not elemental crystals, but are compounds in which alkali atoms are incorporated inside the cages as guests. Because of the open framework in the clathrates, many possible guest atoms can be present in the cages, and these can substantially alter the material properties. Varying the guest species and concentration can give a ma-
tial designer a means by which to “tune” the material properties. A second motivation of the present study is to obtain an understanding of the effects of such guest atoms on the “tuning” of the structural and electronic properties of the Sn-based clathrates. As a first step in obtaining an understanding of the effects of guests in the Sn-based clathrates, here we concentrate only on the type-I framework and consider only Cs guests. The sizes of the cages in the Sn clathrates are the largest of the group-IV (B) clathrates, providing the possibility of a wide variety of guest species. In addition, the Sn-Sn bond is relatively weak (compared with Si-Si or Ge-Ge bonds) and this may influence the guest-host interactions. The first three reports of the synthesis of alkali-doped Sn clathrates have found this to be true; extensive Sn vacancies were found in the framework.

The earliest work on alkali-doped group-IV (B) clathrates assumed full stoichiometry and interpreted x-ray diffraction experiments on this basis. See, for example, the early reports on Na$_8$Si$_{46}$, K$_8$Ge$_{46}$, and Cs$_8$Sn$_{46}$. However, based on a careful interpretation of x-ray data, Zhao and Corbett proposed that two vacancies (per unit cell) are formed in the Rb-Sn and K-Cs-Sn type-I clathrate compounds. According to the correct compositions should be Rb$_{6}$Sn$_{44}$ and K$_{4}$Cs$_{6}$Sn$_{44}$ (Ref. 19) (where \square indicates a vacancy on a framework site). This raises the interesting and important issue of vacancy formation and the energetics of such a process in the group-IV (B) clathrate compounds. It should be pointed out that this phenomenon is intrinsically related to the open cage-like frameworks of the clathrates and to the doping effects of the guests, in which the effective “doping concentration” can be at least three orders of magnitude higher than that in the heavily doped diamond structure Si.

Although vacancy formation can be qualitatively interpreted as caused by a weakening of the framework bonds due to electron transfer from the guest atoms to the framework antibonding levels (conduction bands), the detailed physics of this phenomenon is more complex. Furthermore, vacancy formation and its energetics depend significantly on which group-IV element forms the clathrate framework. A quantitative reexamination the type-I Na-Si clathrate compounds by solid state 29Si NMR and x-ray refinement has revealed no detectable Si vacancies, so that the composition is Na$_8$Si$_{46}$. The full stoichiometry of the framework sites was also confirmed in K$_8$Si$_{46}$ and Rb$_{6}$Si$_{46}$. Vacancy formation remains controversial in the Ge clathrates. Ramachandran et al. have found two Ge vacancies per unit cell (at 6c sites) in K$_{8}$Ge$_{44}$ and Rb$_{6}$Ge$_{44}$, similar to what is found in the Sn clathrates. However, no vacancies have been found by Bobev and Sevov in their Na$_8$Cs$_{16}$Ge$_{16}$ samples. Understanding the energetics of vacancy formation in the Cs-Sn clathrate compounds and the role that vacancies play in “tuning” the properties of these materials are two of the motivations for this study.

A final motivation for this work is to study the basic properties of an interesting class of alloyed Sn clathrate compounds which have recently been shown to have potential thermoelectric applications. A good thermoelectric must have a high Seebeck coefficient, a high electrical conductivity, and a low thermal conductivity. Because of correlations among these properties, it is difficult to simultaneously optimize all of these conditions. A new and interesting direction in the search for desirable thermoelectric systems is to explore the properties of guest-containing open-framework materials. Introducing specific guests into the host frameworks usually produces low frequency, “rattling” vibrational modes. These can strongly scatter the heat-carrying acoustic modes. This concept has been successful in the skutterudites.

Guided by these notions, Nolas et al. have shown that Ge-based clathrates with Sr guests in the cages (Sr$_8$Ga$_{16}$Ge$_{30}$) have a remarkably low thermal conductivity. Recent atomistic simulations of the heat current have shown that amorphous Ge and the type I Ge clathrate frameworks containing guest “rattlers” have comparable thermal conductivities, as was suggested by Slack and as has been seen experimentally. Recently, low thermal conductivities in some Sn-based clathrate alloys, such as Cs$_8$Ga$_8$Sn$_{38}$ and Cs$_8$Zn$_4$Sn$_{42}$ have also been reported by Nolas et al. These two experimentally relevant ternary alloyed Sn clathrates are examined in the present study.

There have been several recent experimental studies of Sn-based clathrates. However, to our knowledge, no theoretical study of these materials has yet been reported. The properties of interest in the present work are the equations of state, the crystalline structural parameters, the energetics of spontaneous vacancy formation, and the electronic band structures. Calculations of the vibrational spectra, which are important for material characterization and are also a key to understanding the material thermal conductivity, will be reported elsewhere.

Six Sn-based clathrate material systems have been chosen for our study. These can be classified into three categories. These are (1) the two elemental framework clathrates Sn$_{46}$ (type I) and Sn$_{136}$ (type II), (2) two binary compounds based on type-I Sn clathrates with Cs guests: the fully stoichiometric compound Cs$_8$Sn$_{46}$ and the vacancy compound Cs$_8$Sn$_{44}$, and (3) two ternary compounds based on type-I Sn clathrates with Cs guests and with groups III or II substitutional atoms alloyed at framework sites: Cs$_8$Ga$_8$Sn$_{38}$ and Cs$_8$Zn$_4$Sn$_{42}$.

II. COMPUTATIONAL APPROACH; A-TIN AND B-TIN RESULTS

Our calculations are based on an ab initio density functional planewave method. The local density approximation (LDA) to density functional theory is used to describe electron correlation effects and the electron exchange-correlation energy is approximated with the Ceperley-Alder functional. This method has been extensively tested on a wide variety of systems. The implementation we use is particularly efficient for the large clathrate unit cells. This technique has been adopted in our previous studies of Si (Refs. 14, 24) and Ge (Refs. 16, 17) clathrates. In those studies, the calculated structural and vibrational properties were found to be in good agreement with experiment. The effects of the generalized gradient approximation (GGA) correction to
TABLE I. LDA-calculated lattice parameters a and c, relative binding energies E_0, and bulk moduli K_0 of α-Sn and β-Sn compared with experimental data and with previous LDA calculations. The minimum binding energies of β-Sn are shown in parentheses, with respect to that of α-Sn.

<table>
<thead>
<tr>
<th></th>
<th>Present Study</th>
<th>Previous LDA Calculations</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Sn</td>
<td>a (Å)</td>
<td>6.46a, 6.48b</td>
<td>6.40c, 6.55d, 6.38e</td>
</tr>
<tr>
<td></td>
<td>E_0 (eV/atom)</td>
<td>-4.484^a, -4.485^b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K_0 (GPa)</td>
<td>44.3a, 44.9b</td>
<td>51.2c, 44.7d, 47.0e</td>
</tr>
<tr>
<td>β-Sn</td>
<td>a (Å)</td>
<td>5.78a, 5.79b</td>
<td>5.70c, 5.70d</td>
</tr>
<tr>
<td></td>
<td>c/a ratio</td>
<td>0.541a, 0.541b</td>
<td>0.545c, 0.541d, 0.544e</td>
</tr>
<tr>
<td></td>
<td>E_0 (eV/atom)</td>
<td>($-0.017)^a$, ($-0.026)^b$</td>
<td>(+0.034)a, (+0.010)d, (+0.022)e</td>
</tr>
<tr>
<td></td>
<td>K_0 (GPa)</td>
<td>58.9a, 60.0b</td>
<td>60.5d, 54.4d, 61.0e</td>
</tr>
</tbody>
</table>

aWithout the $4d$ semicore electrons included.
bWith the $4d$ semicore electrons included.
cReference 45.
dReference 46.
eReference 47.
fReferences 45 and 47.

the LDA were examined in Ref. 14 and were found to be minor. Thus, we neglect these corrections here.

In this study, we use ultrasoft pseudopotentials43,44 to approximate the effects of the core and semicore electrons. Although semicore electron effects are known to be more important in Sn than in Si and Ge, in our calculations of the properties of the Sn-based clathrates, our computational resources have limited us to an explicit treatment of only the Sn valence ($5s^25p^2$) electrons. The clathrate unit cells are large and complex (~ 50 atoms). Thus, adding the semi-core ($4d^{10}$) electrons to the calculations would significantly increase their already significant computational intensity. We have tested this approximation on α-Sn and β-Sn, which have much smaller unit cells than the clathrates. The results of this test are summarized in Table I. In that table, we show our LDA-calculated lattice parameters, relative binding energies, and bulk moduli for α-Sn and β-Sn. Also shown for comparison are the results of previous LDA calculations$^{45-47}$ and relevant experimental data. We have used $10 \times 10 \times 10$ and $8 \times 8 \times 8$ Monkhorst-Pack k-point grids in our α-Sn and β-Sn calculations, respectively. The plane-wave cutoff was 12.9 Ryd. Since Sn is much heavier than C, Si, and Ge, relativistic effects can be important in determining its properties. Our calculations use a scalar relativistic approximation which neglects spin-orbit coupling. Spin-orbit coupling can split degenerate electronic states, but it has a relatively small effect on binding energies. We note that the previous LDA results$^{45-47}$ which are listed in Table I also have neglected spin-orbit coupling.

As is shown in Table I, if the $4d$ semi-core electrons of Sn are included in our calculations, we find that the β-tin phase is the ground state by the small energy 17 meV/atom in comparison with the α-Sn phase. If these semi-core electrons are neglected, this energy increases to 26 meV/atom. It is well known47 that the order of the energetics is reversed in nonrelativistic LDA calculations and that α-Sn has a slightly lower energy at zero temperature. Our failure to obtain the correct relative energetics for the two most common elemental Sn solids may be due to the fact that we have neglected spin-orbit coupling. We have repeated the calculations in the GGA, and the results are similar to the LDA results. We feel that this minor error in the energetics of the α-Sn and β-Sn phases should have little effect on our predicted properties of the Sn-based clathrate phases, which are the focus of this paper. We believe that this error is most prominent when the minimum binding energies for β-Sn and α-Sn are compared, because the bonding in these two structures is very different. A comparison of our calculated minimum binding energies of α-Sn and the Sn clathrate structures should be more reliable, since the bonding in these systems is similar.

For the clathrate systems, the total energy calculations have been performed over a $4 \times 4 \times 4$ Monkhorst-Pack k-point grid. Group theory has been used to reduce the computational effort required to determine the energies and forces during structural optimization. To determine the optimized structure for each material, we have first chosen a fixed unit cell volume, and we have then optimized the ionic positions by minimizing the total (binding) energy through a conjugate gradient algorithm using atomic forces. This process has been repeated for several unit cell volumes, from which an equation of state and a global minimum energy can be determined. Finally, the internal coordinates are optimized at the minimum energy volume. Since the type-I and type-II clathrate structures are cubic (see Sec. III B), optimizing the external lattice (in this case, a single lattice constant a) is straightforward. The equilibrium structural parameters, the electronic band structures, and the vibrational modes38 have been evaluated at the minimum energy configuration.

For each material, the LDA energy vs volume curve which results from the procedure just described has been fit with the Birch-Murnaghan equation of state (EOS).48,49 This fitting determines the minimum binding energy E_0 (the binding energy compared to that of the free atoms), the corresponding volume V_0, the equilibrium bulk modulus K_0, and its pressure derivative $K' = dK_0/dP$.

III. ELEMENTAL TIN CLATHRATE MATERIALS

A. Equations of state and energetics

The Birch-Murnaghan parameters resulting from the fits for the pure Sn clathrate framework materials Sn$_{46}$ and
Sn\textsubscript{136}, along with those for \(\alpha\)-Sn, are listed in Table II. Plots of the fitted EOS curves (at \(T=0 \) K) for the pure Sn clathrates along with those for \(\alpha\)-Sn and \(\beta\)-Sn, are shown in Fig. 1. As can be seen from the figure, the type-I and type-II Sn clathrates are both expanded phases of elemental Sn and their EOS’s are very close to each other in energy at all volumes. Compared with \(\alpha\)-Sn, their unit cell volumes are expanded by the rather large amount of 12–14\%. Further, the predicted minimum binding energies for the clathrates, shown in Table II, are only 38 – 41 meV/atom higher than the predicted minimum binding energies for the clathrates, expanded by the rather large amount of 12–14\%. The bulk modulus of the two types of Sn clathrate frameworks are similar to each other, and are about 13% smaller than that of the \(\alpha\)-Sn structure.

B. Structures and internal coordinates

The local bonding in the group-IV clathrates is similar to that in the diamond structure. However, in the clathrates, pentagonal rings of atoms are present, making the topology quite different from that of the diamond structure. There are two clathrate frameworks, simple cubic (sc) type-I, for which the space group is \(Pm\overline{3}m\), No. 223, and face centered cubic (fcc) type-II, for which the space group is \(Fd\overline{3}m\), No. 227. More detailed discussions concerning the general structural and geometric properties of the clathrates may be found in our previous studies of silicon10,11,14 and germanium16 clathrates and in the references in those papers.

The two pure Sn clathrates (Sn\textsubscript{46} and Sn\textsubscript{136}), are expanded volume phases of elemental Sn. At present, both of these structures remain hypothetical; all Sn-based clathrates which have been synthesized contain guest atoms. Our optimized structural parameters (cubic lattice constant and relative internal coordinates) for Sn\textsubscript{46} and Sn\textsubscript{136} are shown in Table III. The Sn-Sn bond-angles we obtain deviate from the ideal tetrahedral angle of 109.5°, ranging from 104.3°–124.8° in Sn\textsubscript{46}, and from 105.6°–119.8° in Sn\textsubscript{136}. The bond angle spread in the Sn clathrates is similar to the results found in our previous studies of Si and Ge clathrates. We find four distinct Sn-Sn bond lengths in each clathrate type. For Sn\textsubscript{46}, these are 2.77, 2.78, 2.80, and 2.81 Å, and for Sn\textsubscript{136} these are 2.77, 2.796, 2.797, and 2.82 Å. These should be compared with our optimized tetrahedral Sn-Sn bond length in \(\alpha\)-Sn of 2.80 Å. Comparing the type I and type II Sn clathrates, we find that Sn\textsubscript{46} has a slightly larger bond angle spread (20.5° vs 14.2°) than Sn\textsubscript{136}. However, the bond length and bond angle spreads in both clathrate types are small enough to indicate that the formation of these structures should not be energetically very costly, which is in agreement with the fitted EOS results shown in Table II.

C. Electronic band structures

Starting with the atomic geometry given by the optimized crystal structures just discussed, we have calculated the electronic band structures of the pure Sn clathrate frameworks. For comparison, we have also calculated the band structures of \(\alpha\)-Sn and \(\beta\)-Sn. We find that \(\alpha\)-Sn is a semimetal and that

![FIG. 1. Equations of state (energy vs volume) of four Sn phases: \(\alpha\)-Sn (diamond), \(\beta\)-Sn, Sn\textsubscript{46}, and Sn\textsubscript{136}. The LDA-calculated data has been fit to the Birch-Murnaghan equation. Table I gives the resulting parameters.](http://example.com/fig1.png)
bands

~

als Sn 46 and Sn 136 , to be semiconductors. Our results are

rate types, one would expect the pristine framework materi-

We note again that we neglect spin-orbit coupling.

is best to conclude that this material has a “quasidirect”

gap errors are relatively constant from one structure to the

underestimates semiconductor band gaps. In our study of

work on Si and Ge clathrates, we assume that the LDA band

b

which this minimum gap occurs on the line from the

G

Sn 46 and

X

to Sn 46 to Sn 136 should be reliable.

β-Sn is a metal. It is well known that the LDA generally

errors are relatively constant from one structure to the

so that the predicted trend in the band gap as the structure

changes from α-Sn to Sn 46 to Sn 136 should be reliable.

Since each Sn atom is tetrahedrally bonded in both clath-

rate types, one would expect the pristine framework materi-

als Sn 46 and Sn 136 , to be semiconductors. Our results are

consistent with this. In Figs. 2(a) and 2(b) are shown the

calculated band structures of Sn 46 and Sn 136 . In these and

in subsequent figures, the zero of energy is taken at the top of

the valence band. For Sn 46 [Fig. 2(a)], the flatness of the

bands means that the precise k-point to k-point transition

where the minimum energy gap occurs cannot accurately be

determined. Also small geometric changes in the unit cell

structure as well as errors in the LDA are likely to shuffle the

band ordering. For this material, we find three distinct va-

lence band maxima which are nearly degenerate. In addition,

there are three local conduction band minima. Within this

LDA and structural model, we find that Sn 46 is a semicon-

ductor for which the smallest energy gap is 0.855 eV and for

which this minimum gap occurs on the line from the Γ point
to the X point. Since the k-point separation is small and the

bands (particularly the valence bands), are flat, we feel that it

is best to conclude that this material has a “quasidirect”

band gap. The situation is clearer for Sn 136 , for which our

band structures are shown in Fig. 2(b). We find that this

type-II Sn clathrate is a direct band gap semiconductor with

a band gap of 0.458 eV which occurs at the L point.

IV. BINARY TIN CLATHRATE COMPOUNDS WITH

CESIUM GUESTS

A. Energetics, structures, and internal coordinates

We begin our study of the Cs-Sn clathrate compounds

with the idealized, fully stoichiometric system Cs 8 Sn 46 ,

which has the same space group symmetry (O h) as Sn 46 .

The presence of the large Cs guests expands the Sn frame-

work. Using the same LDA optimization and Birch-

Murnaghan procedure as before, we have calculated the EOS

of Cs 8 Sn 46 . The results for the parameters V 0 , K 0 , and K’

for Cs 8 Sn 46 , as well as for the other compounds considered

in this paper, are shown in Table IV. For ease of comparison,

these parameters for pure Sn 46 are also shown again in this

table. In contrast to the previously discussed results of Table

II, the parameter V 0 in Table IV is the volume per unit cell,

rather than the volume per atom.

As can be seen from Table IV, the expectation of an

expanded volume for Cs 8 Sn 46 is realized; we find that the

equilibrium volume is larger by about 8.4% in comparison

with that of the pristine Sn 46 framework. The minimum

energy parameter E 0 has been omitted from Table IV, since the

relative energy has little physical importance when the ma-

terial compositions are different. Instead, we have used E 0 to

estimate the cohesive energy of the Cs-Sn clathrate. To do

this, we define the cohesive energy as the energy released in

producing one unit cell (one formula unit) of the compound

from diamond phase Sn and the elemental metal solid(s). For

Cs 8 Sn 46 , this energy can thus be calculated by analyzing

the energetics of the reaction

\[
46Sn_a + 8Cs_{A_{2}} \rightarrow Cs_8Sn_{46}.
\]

Here, Sn a and Cs A 2 , respectively, denote α-Sn and Cs in the

A 2 phase. A positive cohesive energy in this case favors the

formation of Cs-Sn compounds in the clathrate phases. Our

calculations find an exothermic reaction which releases 226

cal/mol (9.826 eV) of energy per Cs 8 Sn 46 . This is a very

large energy of formation, particularly when it is noted that

the empty Sn clathrate is endothermic compared to the dia-

mond phase. (As shown in Table IV, our calculated cohesive

Table IV. The cohesive energies and Birch-Murnaghan parameters for the type-I Sn-based clathrate materials obtained from a fit to the LDA energy vs volume curve.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Cohesive energy (kcal/mol)</th>
<th>V 0 (Å 3/unit cell)</th>
<th>K 0 (GPa)</th>
<th>K’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn 46</td>
<td>-43</td>
<td>1744.</td>
<td>38.4</td>
<td>4.9</td>
</tr>
<tr>
<td>Cs 8 Sn 46</td>
<td>226</td>
<td>1891.</td>
<td>34.6</td>
<td>3.7</td>
</tr>
<tr>
<td>Cs 8 Sn 42</td>
<td>229</td>
<td>1745.</td>
<td>32.4</td>
<td>5.9</td>
</tr>
<tr>
<td>Cs 8 Ga 8 Sn 38</td>
<td>290</td>
<td>1705.</td>
<td>42.0</td>
<td>4.9</td>
</tr>
<tr>
<td>Cs 8 Zn 4 Sn 42</td>
<td>285</td>
<td>1741.</td>
<td>40.4</td>
<td>5.4</td>
</tr>
</tbody>
</table>
energy for pure Sn$_{46}$ is -43 kcal/mol = -1.8 eV, which is consistent with the EOS results in Table II and in Fig. 1.) This result (and the other cohesive energies in Table IV) clearly shows that Cs acts as a strong stabilizing agent in the Sn clathrate materials.

Correlating with the framework expansion due to the presence of the larger Cs guests, longer Sn-Sn bonds are expected for Cs$_8$Sn$_{46}$ than for pristine Sn$_{46}$. Our results are in agreement with this expectation. The four distinct Sn-Sn bond lengths which we found in Sn$_{46}$ increase in Cs$_8$Sn$_{46}$ to 2.82, 2.86, 2.89, and 2.93 Å. In comparison with Sn$_{46}$, we thus predict a 2–4% bond length expansion. Both the increase in bond lengths and their larger spread indicate a weakening in the Sn-Sn bonds. This is consistent with the calculated bulk modulus (Table IV) for Cs$_8$Sn$_{46}$, which is about 10% smaller than that for Sn$_{46}$. The predicted bond angles for this material are very similar to those in Sn$_{46}$, as they should be since the overall symmetry is preserved. They range from 105.7° to 124.4°. The optimized cubic lattice constant and relative internal coordinates for Cs$_8$Sn$_{46}$, along with those of the other considered materials, are given in Table III. Experimental results do not exist for Cs$_8$Sn$_{46}$. However, results exist for the lattice constants and internal coordinates for several Sn clathrate materials which are related to this material. These are summarized in Table V for comparison with our theoretical results.

There is experimental evidence that laboratory-synthesized alkali-Sn clathrate compounds contain two vacancies per unit cell at the framework sites.19,21 X-ray refinement suggests that the vacancies are at the 6c sites. The locations of 6c sites are at the vertices shared by two hexagons which are perpendicular to each other. Strictly speaking, if the vacancies are randomly distributed over two of the 6c sites, these vacancy-containing clathrates are no longer periodic crystals. In the present study, we simplify this problem by making the approximation that the two vacancies per cell are ordered within the (large) 46-atom type-I Sn clathrate unit cell. We thus assume that the two vacancies exist at particular (see below) 6c sites and we denote the resulting compound by the formula Cs$_8$Sn$_{44}$[Sn$_2$].

All of the 6c sites in the type-I clathrate framework are located within the hexagonal rings. One simple way to visualize the spatial distribution of 6c sites is by “isolating” a 24-atom internal cage. Viewed along the sixfold rotation axis of this cage, one pair of 6c sites lies at the opposite ends of the top hexagonal ring, while another pair of 6c sites lies on the bottom hexagonal ring, with a 90° rotation with respect to the pair in the top ring. With these unit-cell and ordered-crystal assumptions, there are only two nonequivalent configurations for the two vacancies at the 6c sites in Cs$_8$Sn$_{44}$[Sn$_2$]. We denote these choices as models I and II. In model I, there are two vacancies located within the same hexagonal ring (i.e., either both on the top or both at the bottom), and the minimal atomic distance is 1/2 of the lattice constant. In model II, the two vacancies are located in different hexagonal rings (i.e., one on top and the other at bottom), and the minimal distance is $\sqrt{3}$/4 (≈0.6123) of the lattice constant. Using the same optimization and Birch-Murnaghan procedure as before, we have determined the EOS for both models. The results of this procedure then determine the lowest energy model. From these calculations, we find that model II is energetically favored by 0.618 eV/vacancy; quite a large energy. We thus show only the results of model II in Table IV. The much lower energy of model II in comparison with model I is likely caused by the more distant vacancy-vacancy separation. Model II (point group C_{2v}) also has lower symmetry than model I (point group D_{4h}). Because of the entropy term in the free energy, model II should be more energetically favored at finite temperatures.

The optimized lattice constant for model II of Cs$_8$Sn$_{44}$[Sn$_2$] is given in Table III. The internal coordinates of this material are not shown because the placement of the vacancies in this model reduces the cubic symmetry of the Cs$_8$Sn$_{46}$ structure to tetragonal. See also Table V for comparison of our theoretical prediction with experimental data on compounds.
similar to Cs₈Sn₄₄. In addition to the symmetry reduction from cubic to tetragonal, the presence and placement of the vacancies in model II causes considerable distortion in the bond lengths and bond angles from those found in Cs₈Sn₄₆. Instead of the four distinct Sn-Sn bond lengths we have found in the other materials, our calculations find a distribution of bond lengths which range from 2.77 to 2.96 Å. However, the majority of the bond lengths are clustered in the range 2.82 to 2.87 Å, with the ones outside this 0.05 Å range belonging to bonds which are very near to one of the vacancies. Similarly, our predicted bond angles are also distributed over a very wide range from 96.6° to 123.6°, with the majority clustered in the range 104.2° to 116.2°. The bond angles outside this range belong to bonds which are very near to one of the vacancies.

B. Vacancy formation in the Cs-Sn clathrates
An understanding of vacancy formation in the type-I Sn clathrates can be obtained from further analysis of the relative energetics of Cs₈Sn₄₆ and Cs₈Sn₄₄. As just discussed, the LDA shows a weakening of the Sn-Sn bonds in Cs₈Sn₄₆. Further, our electronic band structure calculations (discussed below) show that this material can be viewed as a highly doped tetrahedral semiconductor which is (semi)metallic. Our electronic structure calculations further show that Cs₈Sn₄₄ is a semiconductor in which the donated Cs electrons fill midgap states induced by the Sn vacancies. As a result of this, Cs₈Sn₄₄ is found to have a greatly reduced band gap in comparison with pristine Sn₄₆. The vacancy formation energy which transforms Cs₈Sn₄₆ into Cs₈Sn₄₄ can be interpreted as a competition between the energy gained from the Cs-guest donated conduction electrons dropping into the midgap electron states and the energy cost of breaking an Sn-Sn bond to remove a Sn atom.

The total energy of vacancy formation \((E_V) \) in Cs₈Sn₄₆ which results in that material transforming to the vacancy compound Cs₈Sn₄₄ plus excess Sn, can be computed directly in density functional theory. This energy is determined from the energetics of the reaction

\[
\text{Cs}_8\text{Sn}_{46} \rightarrow \text{Cs}_8\text{Sn}_{44}\square_2 + 2\text{Sn}_8.
\]

An analysis of the energetics of this reaction gives

\[
2E_V = (44 + 8)E^0(\text{Cs}_8\text{Sn}_{44}\square_2) + 2E^0(\text{Sn}_8) - (46 + 8)E^0(\text{Cs}_8\text{Sn}_{46}).
\]

Here \(E^0(\text{Cs}_8\text{Sn}_{44}\square_2) \), \(E^0(\text{Cs}_8\text{Sn}_{46}) \), and \(E^0(\text{Sn}_8) \) are, respectively, the binding energies per atom for Cs₈Sn₄₄, Cs₈Sn₄₆, and α-Sn.

We have computed each energy on the right side of Eq. (3) within the LDA. This yields a vacancy formation energy of \(E_V = -0.065 \) eV/vacancy. The negative value indicates that vacancy formation in these materials is favorable (at \(T = 0 \) K), which is in agreement with experiment. This vacancy formation energy is consistent with the cohesive energy we have computed for Cs₈Sn₄₄, which is 229 kcal/mole (Table IV). This estimate of the vacancy formation energy is based on model II. A similar estimation based on model I gives a value of \(E_V = +0.553 \) eV/vacancy, which suggests that vacancy formation is not favored for this configuration. Based on these results, we conclude that Cs₈Sn₄₄ is stable, and that Cs₈Sn₄₆ will tend to transform to Cs₈Sn₄₄. This result also suggests that vacancies on the 6c sites are unlikely to be randomly distributed. Further, the results for model I indicate that a configuration with two vacancies within the same hexagonal ring is not energetically favored.

C. Electronic band structures
Starting with the optimized atomic geometry for the two binary Cs-Sn materials just discussed, we have calculated the electronic band structures for Cs₈Sn₄₄ and Cs₈Sn₄₆. Qualitatively, one expects that the eight unsaturated bonds left by the two vacancies in Cs₈Sn₄₄ will become lone pairs as the eight valence electrons donated by the Cs guests fill them up. Hence, this compound is expected to be a semiconductor. By contrast, Cs₈Sn₄₆ is expected to be metallic, since all framework bonds in that material are satisfied by the electrons from the Sn host, forcing the eight Cs electrons to occupy the lowest-lying antibonding states (conduction bands) of the Sn framework. This qualitative discussion implicitly assumes a “rigid band” approximation for the Sn framework-derived bands, ignores any band shifting or hybridization produced by the Cs, and ignores the lowered symmetry of Cs₈Sn₄₄ in comparison with Sn₄₆ and Cs₈Sn₄₆. The calculated band structures for Cs₈Sn₄₆ and Cs₈Sn₄₄ are shown in Figs. 3(a) and 3(b), respectively. The qualitative “rigid band” picture just described is confirmed by these LDA results.

In order to best understand the metallic band structure of Cs₈Sn₄₆ [Fig. 3(a)], and in order to enable an easy quantitative comparison with the bands of the other materials, we choose the zero of energy to lie at the top of the Sn₄₆-derived valence band. The “pseudo-band-gap” between these bands and the bottom of the lowest-lying conduction band is 0.526 eV. This occurs between \(k \) points that both lie along the \(\Gamma \) to \(X \) line. Donor electrons from Cs occupy these higher energy states, and the Fermi level lies in the conduction bands at 1.13 eV. Comparison of the shapes of various bands for Cs₈Sn₄₆ with those of the Sn₄₆ framework [Fig. 2(a)] shows that the “rigid-band” picture discussed above is qualitatively correct. This picture asserts that the bands for the guest-containing material are nearly the same as those of the framework and that the system simply raises its Fermi level to accommodate the guest electrons. Another effect of the Cs electrons on the Sn₄₆ band structure is to lower the conduction bands towards the valence bands, decreasing the pseudo-band-gap. As may be seen in Fig. 3(a), we find three distinct valence band maxima, which are nearly degenerate and three local conduction band minima.

There is a large qualitative change in the bands of the compound Cs₈Sn₄₄ [Fig. 3(b)] compared with those for Cs₈Sn₄₆. As is shown in Fig. 3(b), we find that Cs₈Sn₄₄ is a very narrow gap semiconductor. As already mentioned, the lattice symmetry in this material is reduced from the cubic symmetry of Cs₈Sn₄₆ to tetragonal. Hence, in Fig. 3(b) we
have plotted the bands along the line from the Γ point to the Z point in the Brillouin zone, as well as from the Γ point to the X point. As can be seen in the figure, both the shape of the bands and the resulting band gap are qualitatively quite different along these two directions. We find that the minimum band gap is approximately 0.07 eV and that it occurs along the Γ to Z line, near the Z point. In this regard, we point out again that the LDA is known to underestimate band gaps. In this material, we also find three distinct, nearly degenerate, valence band maxima and three local conduction band minima.

Despite the lowering of the symmetry, the "rigid-band" picture is still useful to obtain a qualitative understanding of the bands for this material. In particular, several vacancy-derived states ("dangling-bond" levels) can be identified. These lie within the Sn$_{46}$ derived band gap [compare with Fig. 2(a)]. These levels are fully occupied, and reduce the band gap to the mentioned value. The vacancies and the resulting lattice distortion have clearly drastically altered both the shapes of the valence and conduction bands and their positions in comparison with the bands of Cs$_8$Sn$_{46}$.

V. TERNARY TIN CLATHRATE COMPOUNDS

A. Energetics, structures, and internal coordinates

A class of more complex clathrate compounds is that with both donor alkali guest atoms inside the cages and substitutional acceptor atoms replacing some of the framework atoms. A clathrate framework which contains both group IV (B) (host) and acceptor (impurity) atoms can be viewed as an alloy. Compounds based on type I clathrates have been synthesized both with single acceptor (group III) atoms and with double acceptor (group II) atoms replacing some of the group IV (B) atoms. As prototype materials for the present study, we choose two such Sn clathrate-based materials: Cs$_8$Ga$_8$Sn$_{38}$, in which the Ga atoms act as single acceptors, and Cs$_8$Zn$_4$Sn$_{42}$, in which the Zn atoms act as double acceptors. Both of these materials have recently been synthesized and have been suggested for possible thermoelectric applications.

Introducing electron acceptors, such as Ga or Zn, into the clathrate framework is expected to stabilize the lattice and to prevent vacancy formation. Since the acceptor atoms are charged, their location in the lattice has important effects on the energetics of these materials. In order to avoid the difficult task of treating random Sn/Ga or Sn/Zn clathrate alloys, we have constructed symmetric, ordered structural models for these compounds. Following the guidelines we have previously found and used successfully for alloyed Ge clathrates, we have assumed that there are no nearest-neighbor Ga-Ga or Zn-Zn bonds in the lattice structure. In addition, for Cs$_8$Ga$_8$Sn$_{38}$, we have assumed that the eight Ga atoms occupy half of the 16i sites. There is one unique symmetry way to accomplish this, which reduces the point group symmetry from O_h to T_d. For Cs$_8$Zn$_4$Sn$_{42}$, we have used the results of recent x-ray data and have assumed that the substitutional Zn atoms are on 6c sites. Similar to Cs$_8$Sn$_{44}$, there are two ways to construct such a model of Cs$_8$Zn$_4$Sn$_{42}$. Here, we concentrate on the model with C_{2v} symmetry. This is similar to model II for Cs$_8$Sn$_{46}$.

Using the same optimization and Birch-Murnaghan procedure as before, and using the assumptions just discussed for the lattice structures of Cs$_8$Ga$_8$Sn$_{38}$ and Cs$_8$Zn$_4$Sn$_{42}$, we have calculated their EOS’s. The parameters of a fit to a Birch-Murnaghan EOS for Cs$_8$Ga$_8$Sn$_{38}$ and Cs$_8$Zn$_4$Sn$_{42}$ are shown in Table IV. As may be seen in that table, the equilibrium volume V_0 of Cs$_8$Ga$_8$Sn$_{38}$ is about 98% of that of the pure Sn$_{46}$ framework, while, that for Cs$_8$Zn$_4$Sn$_{42}$ is almost identical to that of Sn$_{46}$. Further, the predicted equilibrium bulk modulus K_0 for Cs$_8$Ga$_8$Sn$_{38}$ is about 9.4% larger than that for Sn$_{46}$, while for Cs$_8$Zn$_4$Sn$_{42}$ it is about 4.9% larger. As before, instead of directly showing the minimum energy parameter E_0 in Table IV, we have used our results for these to estimate the cohesive energies of these materials. The predicted cohesive energies for Cs$_8$Ga$_8$Sn$_{38}$ and Cs$_8$Zn$_4$Sn$_{42}$ are 290 and 285 kcal/mole, respectively.

We have also optimized the internal atomic coordinates for these materials. We first discuss Cs$_8$Ga$_8$Sn$_{38}$. The framework of this material expands due to the Cs in the cages, and there is also considerable framework distortion due to the presence of the smaller Ga atoms on some of the Sn sites. We find three distinct Sn-Sn bond lengths (2.83, 2.84, and 2.89 Å). The Sn-Sn bond length is thus expanded by 2 to 4% over those in Sn$_{46}$. Based on atomic radii, the Ga-Sn bond lengths are expected to be shorter than the Sn-Sn bond length. Our results confirm this. Two distinct Ga-Sn bond lengths are...
found, 2.61, and 2.65 Å. We find three distinct types of framework bond angles. The (Sn-Ga-Sn) bond angles range from 108.75° to 110.2°, the (Ga-Sn-Sn) bond angles range from 108.1° to 112.3°, and the (Sn-Sn-Sn) bond angles range from 101.0° to 113.9°. For the assumed arrangement of Ga atoms in the framework, there are no (Ga-Sn-Ga) bond angles. The optimized lattice constant is shown in Table III. Again, the internal coordinates of this material are not shown because it does not have the symmetry of Sn$_{46}$ and Cs$_8$Sn$_{46}$.

For Cs$_8$Zn$_4$Sn$_{42}$, we again find considerable framework expansion and distortion due to Cs in the cages and to the presence of the smaller Zn atoms on four of the Sn sites. There are several distinct Sn-Sn bond lengths, which range from 2.78 to 2.90 Å. This is similar to the range found for Cs$_8$Sn$_{46}$ and results in a similar large bond length spread. However, the majority of the Sn-Sn bond lengths are in the range 2.79 to 2.84 Å. The Sn-Zn bonds are considerably shorter than the Sn-Sn bonds, as is expected from atomic radii considerations. There are two distinct Zn-Sn bond lengths of 2.62 and 2.65 Å, and there are three types of bond angles. The (Sn-Zn-Sn) bond angles range from 107.9° to 110.8°, the (Zn-Sn-Sn) bond angles range from 108.3° to 128.0°, and the (Sn-Sn-Sn) bond angles range from 99.9° to 122.2°. For our model structure, no (Zn-Sn-Zn) bond angles exist.

Table III shows the optimized lattice constant for Cs$_8$Zn$_4$Sn$_{42}$. See also Table V, which contains experimental data on Cs$_8$Ga$_8$Sn$_{38}$ and similar compounds for comparison with our theoretical predictions. The internal coordinates of this material are not shown because it does not have the same symmetry as Sn$_{46}$ and Cs$_8$Sn$_{46}$.

B. Electronic band structures

We have performed electronic band-structure calculations for the two Sn clathrate compounds Cs$_8$Ga$_8$Sn$_{38}$ and Cs$_8$Zn$_4$Sn$_{42}$. The atomic geometries used in these calculations are the optimized structures just discussed. Since the LDA generally underestimates semiconductor band gaps, we again assume that the band gap errors are relatively constant from one structure to the next. Thus, the trends in the band gap as the material composition is changed from Sn$_{46}$ should be meaningful.

In Cs$_8$Ga$_8$Sn$_{38}$, the substitutional Ga acceptors are compensated by interstitial Cs donors and this compound should be a semiconductor. Similarly, one expects Cs$_8$Zn$_4$Sn$_{42}$ also to be semiconducting if Zn acts as a double acceptor. These simple conclusions again assume a “rigid band” approximation for the Sn framework-derived bands, and they ignore the band shifting and hybridization effects caused by the donors and acceptors. That such a picture holds is not obvious since the “doping” levels of these materials is enormous when measured by the standards of conventional electronic materials. However, this qualitative picture is indeed confirmed by our detailed calculations.

In Figs. 4(a) and 4(b), we show the band structures for Cs$_8$Ga$_8$Sn$_{38}$ and Cs$_8$Zn$_4$Sn$_{42}$, respectively. The zero of energy is taken at the top of the valence band. As mentioned above, our model of Cs$_8$Zn$_4$Sn$_{42}$ has tetragonal symmetry. Hence, in Fig. 4(b) we have plotted the bands along the Γ to Z line, as well as from Γ to X. In agreement with the qualitative, “rigid band” picture just discussed, we find that Cs$_8$Ga$_8$Sn$_{38}$ and Cs$_8$Zn$_4$Sn$_{42}$ are semiconductors with band gaps of 0.619 and 0.574 eV, respectively. Comparison of the shapes of various bands for the compounds is also consistent with this qualitative picture. For example, comparison of the bands for Cs$_8$Ga$_8$Sn$_{38}$ [Fig. 4(a)] with those of Cs$_8$Sn$_{46}$ [Fig. 3(a)] shows that the alloying of Ga in the Sn framework changes little the overall shape of the upper valence and lower conduction bands. Similar statements can be made about the bands of Cs$_8$Zn$_4$Sn$_{42}$ [Fig. 4(b)].

For reasons similar to those discussed above for the other materials, the precise k-point to k-point transition for the minimum energy gap is probably not meaningful. For both Cs$_8$Ga$_8$Sn$_{38}$ and Cs$_8$Zn$_4$Sn$_{42}$ [Figs. 4(a) and 4(b)], we find three distinct valence band maxima which are nearly degenerate as well as three local minima in the conduction bands. Within the LDA and the structural models for these materials, the smallest energy gap in both cases is direct; between bands at k points that lie along the Γ to X line.

VI. SUMMARY

Using the LDA, we have determined the equilibrium structural parameters, the equations of state, and the elc-
tronic band structures of the following Sn-based clathrate materials: \(\text{Sn}_{46}, \text{Sn}_{136}, \text{Cs}_8\text{Sn}_{46}, \text{Cs}_8\text{Sn}_{44},\) \(\text{Cs}_8\text{Ga}_8\text{Sn}_{38},\) \(\text{and}\) \(\text{Cs}_8\text{Zn}_4\text{Sn}_{42}\). The minimum binding energies we find for the pure Sn clathrates are \(-38 \text{ meV/atom (Sn}_{136}\) and \(-41 \text{ meV/atom (Sn}_{46}\) higher that that of \(\alpha\)-Sn, and their volumes per atom are larger than that of \(\alpha\)-Sn by \(-12\% (\text{Sn}_{46}\) and \(-14\% (\text{Sn}_{136}\). We find that all materials considered are semiconductors except for \(\text{Cs}_8\text{Sn}_{46}\), which is metallic. For the semiconductors, we find band gaps of \(0.855 \text{ eV (Sn}_{46}\), \(0.610 \text{ eV (Cs}_8\text{Ga}_8\text{Sn}_{38}\), \(0.574 \text{ eV (Cs}_8\text{Zn}_4\text{Sn}_{42}\), \(0.07 \text{ eV (Cs}_8\text{Sn}_{44}\), and \(0.458 \text{ eV (Sn}_{38}\).

In order to obtain an understanding of vacancy formation in the type-I Sn clathrates with Cs guests, we have also computed the energy of vacancy formation \(E_V\) in the reaction which transforms \(\text{Cs}_8\text{Sn}_{46}\) to \(\text{Cs}_8\text{Sn}_{44}\) plus excess Sn. Within an ordered model of \(\text{Cs}_8\text{Sn}_{44}\), we find \(E_V = -0.065 \text{ eV/vacancy}\). Thus, in qualitative agreement with experiment, we find that vacancy formation is favored in this system (at \(T = 0\)).

Clathrate materials based on Sn are currently being studied experimentally for thermoelectric and electronic materials applications. We hope that our predictions will prove useful in better understanding such experiments.

ACKNOWLEDGMENTS

We thank the NSF for Grants No. DMR-99-86706 and No. DMR-96-32635, through ASU MRSEC which partially supported this work. We thank Dr. Ganesh K. Ramachandran, Professor Paul F. McMillan (Arizona State University/University College London/Royal Institution Great Britain), Professor Jan Gryko (Jacksonville State University), and Professor George Nolas (University of South Florida) for many helpful discussions. C.W.M. thanks Texas Tech University for a Faculty Development Leave which enabled him to carry out this work and the Department of Physics and Astronomy at Arizona State University for their hospitality while a portion of this work was done. J.D. acknowledges the support from his Auburn University start-up fund and many insightful discussions with Professor A.-B. Chen (Auburn University).

39 The calculations have been performed using the Vienna Ab initio Simulation Program (VASP), developed at the Institut für Theoretische Physik of the Technische Universität Wien. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
49 The Birch-Murnaghan equation for the energy E as a function of volume V is \(E(V) = E_0 + \frac{1}{2} K V_0 (V/V_0)^{7/3} - 1 \left\{ 1 + \left[1 - (V/V_0)^{2/3} \right] \right\} \).