
Extended projects for Computational Physics
The purpose of these extended projects is to get you to develop some skill at

working with more than one computational technique at the same time. I am
intentionally leaving the requirements a little bit open-ended because I want
to see you doing some exploration of what you can learn by using the same
program with different sets of conditions, or very similar programs with small
modifications. Physics is more fun when you explore!

If you wish to do a project on something different, please feel free to discuss
it with me. I don’t have any objections to this, but I wanted to put my time
and energy into describing one project carefully, rather than giving you a menu
of poorly-thought out projects.

Expectations for your reports

For the final projects, your reports must be much more involved than they
have been for your past projects. I expect to see at least a few pages of text,
with figures embedded in the text to illustrate what you have learned from doing
the computational exercises. Write your report the way a section in a textbook
would look if it were discussing the same topic, and then also make a technical
appendix where you include your code.

Project: harmonic oscillators

To get started on this project, you may find the Fourier transform program
useful, and the pendulum program useful. For the discussion here, I’m drawing
pretty heavily on Wikipedia, after having verified from my freshman physics
textbook that the information there is all correct. Wikipedia has nice notation,
and is easy for you all to find if you wish to get a bit more context than what
I’m giving you here.

You will have to modify the pendulum program to deal with an ideal spring,
where:

F = −kx (1)

instead of a force that scales with the sine of the angular displacement.
(1) So, first, run the program in the basic case of the simple harmonic os-

cillator, and see what happens. Take the Fourier transform of the output data
to ensure that the frequency you get out of the system is the one you were
expecting to get. Hint: it should be ω0 =

√

k/m.
(2) At this point you need to do at least one other thing with the program

to merit a passing grade on the assignment. If you do more than one of them
you can expect to get a better grade.

(a) Damped harmonic oscillators
In many cases, there will be some appreciable form of friction on a harmonic

oscillator, and the frictional force will be proportional to the velocity of motion.
Air resistance, and internal friction are two main sources of this.

We then get an additional force term, so that the force law can be defined
as:

F = −kx − c
dx

dt
= m

d2x

dt2
. (2)
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A variable ζ (zeta) can be defined to be ζ =
(

c

2
√

mk

)

, and the differential

equation can be re-written as:

d2

dt2
+ 2ζω0

dx

dt
+ ω2

0
x = 0 (3)

Include the damping term. Discuss the qualitative behavior of the system
for ζ > 1, ζ = 1, and ζ < 1. Show also, using the Fourier transform program,
how the frequency of the oscillations depends on ζ for ζ < 1.

(b) Non-ideal springs
A non-ideal spring is one where F is not equal to kx, but rather is some

other function of x. Let’s keep this simple, and make the force law a polynomial.
Next, let’s remember that we don’t want any forces that always act in the same
direction, so let’s keep only odd-powered terms. Finally let’s not overthink
things right from the start, so let’s just add in a term with some constant times
x3.

Now, we can have “hard springs” and “soft springs”. Hard springs are
springs which restore themselves even faster when stretched out a lot, and soft
springs are those which restore themselves more weakly when stretched a lot.

Set up force laws with hard and soft springs. Run the program for different
sets of initial displacement. Plot the results. Also, take Fourier tranforms of
the data you produce and see if you can find a trend in terms of the frequency
of oscillation versus the displacement for the two different cases.

One other thing you might wish to try if you really want a challenge is the
“bilinear oscillator”. This has F = −k1x for positive x and F = −k2x for
negative x. It could represent something like a cracked beam supporting part
of a machine. In this simple case, it’s a reasonably well-behaved system, and
it’s actually no harder to do stuff with it. But if you get to the step of driving
and damping this oscillator in step (c), it becomes remarkably complicated for
how simple the equations are.

(c) Driven, damped harmonic oscillators
You may wish to go back to the plain old simple F = −kx force law for this

part, so that you aren’t dealing with too many difficult things all at the same
time.

For a driven, damped harmonic oscillator, we add one more term to the
equation – a driving force. Now,

Fd(t) − kx − c
dx

dt
= m

d2x

dt2
, (4)

where Fd(t) is the driving force. We normally presume that the driving force
will be sinusoidal, at least for early-stage coursework.

Then,
d2x

dt2
+ 2ζω0

dx

dt
+ ω2

0
x =

1

m
F0sin(ωt) (5)

This will have two components to the solution. One is a “transient” solution
which depends on the initial conditions, and we tend to ignore that. The other
is the steady state solution, which will be an oscillation:
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x(t) =
F0

mZmω
sin(ωt + φ), (6)

with

Zm =

√

(2ω0ζ)2 +
1

ω2
(ω2

0
− ω2)2, (7)

and

φ = arctan

(

2ωω0ζ

ω2
− ω2

0

)

(8)

A “resonance” can occur when the damping is weak and the driving force is
at very close to the resonant frequency, ωr = ω0

√

1 − 2ζ2.
For this part, there are a lot of things you can try – but the most interesting

is probably to compute the results of using several different driving frequencies,
and show that the resonance develops where it should if and only if ζ <

√

2/2.
(d) Anything else you find interesting! Remember, of course, that you can

always poke into new things, if something sparks your interest!
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