Numerical solutions of functions

One of the things that we often need to do in physics is to find the roots
of functions. In some simple cases, this can be done analytically. For example,
you can use:

_ —bxVb? —dac
B 2a
to find the roots of a quadratic equation of the form:

T

(1)

ax® +br+c=0 (2)

There are formulae, albeit more complicated ones, that work for values up
to 4th order polynomicals. It has been proved, in the Abel-Ruffini Theorem,
that 5th order polynomials cannot be solved with a catch-all formula. There are
also, of course, functions which are not polynomials which can be even harder
to solve by this kind of methodology.

In this week’s assignment, we will program up one of the classic methods,
something called the Newton-Raphson method. Before we get to it, though, I
want to start off by giving some warnings about some of the problems with that
method, and some discussion of the reasons for the existence of other methods,
which are often slower to give a good answer, and which are definitely more
complicated to program. I will also give you some discussion about how you
can use the Newton-Raphson method more “safely”.

A general numerical approach to finding roots

First, we want to consider a general algorithmic approach to finding the
roots of an equation. The ideal approach will be simple to program, and will
always find the root that we want to find. We need to remember that some
functions have no roots, and we’d like to figure that out right away, and some
functions have many roots, and we’d like to make sure that if we don’t find all
of them, we find that one or ones that we want.

Let’s take a look at a few cases that can present special challenges:

1. Functions which don’t have any roots. An example is:

fla) = — (3)

r—cC

This function approaches oo as it approachs ¢ from the different sides of
¢, but it never actually takes the value 0.

2. Functions with roots close to one another. An example might be:

f(z) = x* —0.0001. (4)

In this case there will be two roots, at £0.01. In a simple case like this,
it’s fairly straightforward to deal with this problem, but with a more
complicated function that gave these two values, and for which it wasn’t



clear there were two solutions, it might be hard to determine ahead of
time that there were really two nearby solutions. This could be especially
true if you had a function with solutions at 0.01, 0.011, and 500.

3. Functions with derivatives that behave in complicated ways. As we will
see in a bit, the Newton-Raphson method makes use of the derivative of a
function to help find the roots. If the derivative flips signs near the root,
the Newton-Raphson method can be very difficult to use effectively.

There are some simple methods that can work and which can be programmed
easily, but which converge slowly, and hence which we will not use. One is the
bisection method. In this method, the algorithmic approach is as follows:

1. Find a value 4 for which f(z4) > 0 and a value z_ for which f(z_) < 0.

2. Compute the value of f(x4 4+ z_). Some small fraction of the time, the
value of the function will be exactly zero, but otherwise, one will have
either a positive or a negative value of f at that halfway point.

3. Ask if the precision on the answer is suitable for your purpose. If it is,
then stop. If not, go back to step 2, using the new value you have found.

This method always works. It can run into trouble for cases where there are
two close together roots within your search. Then it will find one of them. If
there’s a singularity, rather than a root, it will find the singularity’s location to
high precision. By seeing that the evaluations of the function are going toward
infinity, rather than toward zero, as you converge, you should also be able to
figure out that the system is converging to a singularity.

A faster, but less robust approach: the Newton-Raphson method

The Newton-Raphson method is a simple, straightforward method for solv-
ing equations which have smoothly varying derivatives. Mathematically, it
comes form taking the Taylor series of a function around the root:

@) g2y (5)

fla+6) @) + f@)o+ 17

If we are already relatively close to the root, so that we can ignore all but
the first two terms on the right hand side of the equation, we can say that:

f(@)
6 == . 6
7@) o)
We can then turn this into an algorithmic approach for finding the roots to

equations:
f(z3)

Tit1 = Tq — f'(xz) (7)

4

We can iterate through the above equation and for “well-behaved” functions,
we should find that we quickly converge to the right root.



There are now two more things to consider: first, what constitutes a well-
behaved function, and second, what do we do in cases where we can’t compute
the function’s derivative.

The meaning of “well-behaved”

The definition here will be a bit circular. A function is well-behaved with
respect to the Newton-Raphson method if it converges to giving the right answer.
This isn’t particularly helpful, but what can be useful is to consider some cases
which aren’t well behaved. Consider, for example, a cubic function, which has
a region of zero derivative somewhere close to, but not at, the solution. In that
case, you could get the derivative taking the wrong sign, even.

The solution for how to deal with this case is to have a good initial guess at
the value of the root. You can ordinarily do this by starting by graphing the
function, and eyeballing where the root is, and then using that as a starting
value.

When we can’t compute the derivative

Sometimes we will have functions which do not have derivatives which can
be computed analytically. This will not be the case for any “simple” functions,
but it may be the case for some more complicated special functions that may
be interesting in physics. In this case, we can go back to the definition of a
derivative and compute the derivative numerically:

fl(@)de = f(z + dz) — f(z). (8)

This has the advantage of being something that works for any function that
can be computed. It has the disadvantages of requiring more computer time per
step, and also of being less precise that computing the derivative analytically.

Additional reading If you wish to get a better feel for how to work with
more complicated methods, please read chapter 9 of Numerical Recipes, which
covers a wide range of approaches. A fair bit of these notes were based on the
discussions in Numerical Recipes.



