
Numerical integration
Many times in physics we will encounter important and interesting problems

for which we can write down the equations governing the system, but for which
we cannot solve the equations in closed form. There are some very simple,
well-defined functions for which the integral can be computed only numerically.

One extremely important example is the Gaussian:

g(x) = exp−
(x−x0)2

2σ2 . (1)

The Gaussian is also sometimes called the normal distribution. It can be shown1

that adding together large numbers of distributions almost always eventually
produces a Gaussian distribution – this is called the central limit theorem, and
you should encounter it in your first course on statistical mechanics, if not
sooner.

One thing that is almost always distributed as a Gaussian is the background
noise in an experiment.2 That is to say, if you make a huge number of measure-
ments of something, and plot the probability that each measurement will be in a
small range between x and x+ δx, that function will be a Gaussian in most real
world cases. For this reason, if we want to estimate the probability that some
measurement is really telling us about something besides the fluctuations in the
background, then we want to be able to integrate out the Gaussian distribution.

Pitfalls for any summation process on a computer

Any time you are summing numbers on a computer, you need to be aware
of round-off errors. The computer allocates only a certain amount of memory
to writing down a number, and then records a number in binary notation which
is as close as possible to the actual number. This is part of the reason we
make integers a separate data type on the computer. The amount of memory
allocated to a floating point number will vary from computer to computer.3

Morten Hjorth-Jensen from the University of Oslo has a nice set of notes
on computational physics which is a little bit too advanced, in general for this
course, but which provides a nice example of something we can do to see the
effects of round-off error. We can just sum (1/n) from 1 to 1,000,000 (or some
other large number), and then take the same sum going in the opposite direction.
I have written a version of the program myself, and it’s called sum 1 n.cc on
the course program web page.

On my laptop, I ran this program with regulat floating point precision, and
got 14.357358 going forward (i.e. starting at 1), and 14.392652 going backward.
I then changed the data type to double and I got 14.392727 for both numbers,

1Whenever a physicists or a mathematician uses the phrase “It can be shown” you should
usually assume that whatever comes after that is (1) a well-established result and (2) probably
requires about 15 minutes or more of algebra on the blackboard. You can almost always assume
that “it can be shown” also means “it won’t be shown”.

2One notable exception is the rates of counting events when those rates are small. Then
they follow something called the Poisson distribution. When the rates become large, the
Poisson and Gaussian distributions converge to one another.

3gcc -dM -E - </dev/null | grep FLT will print this out for you for a standard float,
and you can change FLT to DBL to see what happens with double precision numbers.

1

although the numbers weren’t strictly equal at the machine accuracy level, but
rather at the level at which I outputted them to the screen.

Addition is not normally the problem, unless you do an enormous number
of addition operations, though – subtraction is much tougher for a computer to
do correctly. Any time you subtract a number which is almost as big as the
number you started with, you risk running into some problems. A nice example
of this, which I take from Wikipedia, but check myself, is that of the quadratic
equation. Suppose you are trying to solve a quadratic equation:

ax2 + bx+ c = 0 (2)

using the quadratic formula you learned in high school:

x =
−b±

√
b2 − 4ac

2a
. (3)

In some cases, if you try to do this on your calculator, you will get the
wrong answer, and the same thing will be true on a computer in floating point
arithmetic. The main source of problems will arise when |b| >> c – when that’s
true, then one of the roots will be very close to zero and the other will be very
close to −b.

In all cases, there are a few other formulae that we can use. We can see that
the roundoff error in the−b value will be pretty small, as a fraction. Then we can
use a formula from the French mathematician François Viète, who proved that
x1x2 = c

a
, where x1 and x2 are the roots of the quadratic. We can find the root

that is computed accurately (i.e. with addition, rather than subtraction) and
then the other root will be c/a times the reciprocal of the first root. Whether
the root involving taking the positive or negative square root is more accurate
depends on the sign of b. This is coded up in the function viete formula in
the program solve quadratic.cc.

In summary:

1. Subtraction (or, more precisely, addition of numbers with different signs)
is the process that causes the worst round-off error, but round-off error is
always possible, even with addition

2. Doing large numbers of calculations also increases the chance of getting
bad round-off errors

3. You can often reduce the errors using clever numerical methods. Also, you
can often find the clever methods in an applied math book if you know
where to look.

Methods for numerical integration

Now that we have discussed the issue of numerical round-off error, we can
move on to doing numerical integration on the computer. The reason we first
discussed the case of round-off error is that a lot of numerical integrations in-
volve doing an extremely large number of additions, and so numerical round-off
becomes something of which you should be aware.

2

Rectangular integration

The simplest method of doing numerical integration is called the rectangular
rule method. This basically involves turning the basic expressions of calculus
into a discrete summation (i.e. if you are integrating over x, instead of taking
the limit as δx goes to 0, set δx to some small, finite value).

This method is simple to code and simple to understand; those are its ad-
vantages. Its main disadvantage is that for functions which change quickly, the
step sizes in the integration need to be very small in order to allow it to converge
quickly. The errors in one step are of order the square of the step size, and the
overall error is of order the step size – so making the steps smaller to get faster
convergenece of the integral to the correct answer helps only at the cost of a
much larger number of steps being used. Using a very large number of steps
increases the effects of numerical round-off error, and, usually more importantly,
increases the amount of time the computer program takes to run.

Despite these disadvantages, this method is a good place to start learning,
and works effectively for a variety of relatively simple problems. Mathematically,
we just need to find the value of :

I ≈ f(a)× (b− a), (4)

where I is the integral we wish to compute. Then, we can sum the values of a
series of these rectangles up, with the widths made smaller and smaller to allow
for more accurate computations.

Often, this rule is adapted into something called the trapezoidal rule by
taking the average of the function values at the start and end of each step.

I ≈ (f(b) + f(b))/2 ∗ (b− a) (5)

This is practically the same thing, especially as the number of steps taken
becomes large. It becomes exactly the same rule if after going through the
process one subtracts half value of the function at the start point and adds half
the value of the function at the end point – so the most efficient way to compute
the trapezoidal rule is actually to use rectangles with only the start point values,
and then make the small adjustment at the end.

The errors in numerical integration procedures are usually written out as a
coefficient, times the difference between the start and end values of the domain
of the integral, times some nth order derivative of the function at some value
between the start and end values of the domain. Or, as an equation, perhaps
more simply, if we are integrating f(x) from a to b, using steps of size ∆ (in
this case, the domain is broken into N segments of width ∆ = (b− a)/N):

E ≤ (b− a)∆2

24
f (2)(ξ) (6)

gives the error on the integral. In this expression f (2) refers to the second
derivative of f , and ξ is a number between a and b.

Simpson’s rule

3

Simpson’s rule is a simple way to compute integrals that gives exact values for
polynomials up to cubic functions, and which converges to the correct answer
much faster than Euler’s method for most other functions. Simpson’s rule is
based on the idea that for each interval, the integral can be approximated by:

I ≈
∑ b− a

6
[f(a) + 4f(

(

a+ b

2

)

+ f(b)]. (7)

Simpson’s rule has an error that goes as (b−a)5

2880 f (4)(ξ). Thus for functions
with very small third derivatives, the rectangular rule may actually converge
faster, but otherwise Simpson’s rule should converge faster – that is to say,
usually fewer steps can be used with Simpson’s rule to get the same level of
accuracy as with the trapezoidal rule.

More terms can be added to the process in order to get even faster conver-
gence. There exist things called Simpson’s 3/8 rule (which has errors a factor
of about 2.5 smaller, and uses four values per interval instead of 3) or Boole’s
rule (which uses 5 values per interval, and then scales with the sixth derivative
of the function). We won’t use these in class, but it might be useful for you to
be aware of them at some time in the future.

Going beyond the simple approaches

If you have an especially hard integral to compute, and you wish to get the
answer as exactly as possible with a reasonable amount of computer time, there
are some things you can think about doing. First of all, there are some kinds of
functions for which there are entirely different approaches which can be taken.
If, for example, you have a function with only small, known, deviations from a
polynomial, you can use something called Gaussian quadrature. If you have a
function which varies very smoothly, or which has very small values, in some
regions in x and which varies quickly, and/or takes large values in some regions,
you may choose to have adjustable step sizes.4

4If your function is easily differentiable over a wide range of values, then you can figure out
if this is likely to be a useful thing to do by computing its fourth derivative, since the error in
Simpson’s rule calculations scales with fourth derivative.

4

