
Fourier analysis
This week, we will learn to apply the technique of Fourier analysis in a

simple situation. Fourier analysis is a topic that could cover the better part of
a whole graduate level course, if we explored it in detail, but it’s also something
where in a single lesson, along with a bit of the work from the student, you
can go from zero knowledge to being able to do some useful things – you will
be exposed to the Fourier transform here, and will develop a tool you can use
to compute Fourier transforms, but you should expect that you will have to
do a lot more learning if, e.g. you run into a research problem that requires a
deep knowledge of Fourier transforms. The Fourier transform is one of the most
commonly used mathematical procedures across a wide range of scientific and
technical disciplines. It is a process which converts a function into a set of sines
and cosines.

Often, we perform what is called a discrete Fourier transform. A function
is a continuous set of values. Of course, no experiment will give us a truly
continuous set of values, so instead, we will want to have a recipe that can take
a set of discrete values, and find the set of functions that describe it. There
will be some limitations to the process (e.g. we will not be able to figure out
how something is varying when it varies much faster than speed at which we
collecting the data).

I will give examples based on the assumption that some quantity is varying
in time, but the math can be applied to spatial variations (or variations with
respect to some abstract quantity) as well.

The simple, intuitive approach

There is a simple approach to figuring out what a Fourier transform means,
which is something that can be used to compute a Fourier transform. There is
a mathematical approach called matched filtering which can be used in its very
simplest form here.

Let’s consider some arbitrary function, f(x). It ranges from −1 to +1 in
value. How can we figure out what it is? We can take some other function
whose value we know, and we can multiply the two functions together, and take
the integral of the result. If the two functions are the same, then the value of
the new function is f2(x). If the two functions are different the value will be
something smaller. This is a trivial case, of course, because if we already know
the function f(x), we wouldn’t try to represent it as a single function.

Let’s consider a slightly different case, that we have a function f(x) which we
think is made of the sum of a set of sine waves (or, equivalently, with just a phase
shift, cosine waves), but we don’t know what the frequencies, normalizations or
phases of the sine waves are. Then we wish to multiply the function by every
sine wave possible, and see where the integrals come out big and where the
come out small. This seems like a daunting job, especially when we consider
the infinite number of phases we’d need to check.

We can actually get around the phase problem simply by using a little bit

1



of high school trigonometry.

sin(a+ b) = sinacosb+ sinbcosa. (1)

Thus we can take:

sin(2πft+ θ) = sin(2πft)cosθ + sinθcos(2πft). (2)

We can then see that our original function can be expressed as a sine com-
ponent with a particular frequency and a cosine component with the same fre-
quency, and the relative normalizations of the two components will determine
the phase. The phase issue is thus easily converted from an infinite set of possi-
bilities, to just the requirement that we check the normalizations of all the sines
and all the cosines.

Thus, for analytic functions we can produce an integral over the sines and
an integral over the cosines, and find the coefficients of the sines and cosines. I
will spare you the detailed math on this, since it’s not the normal way of doing
things.

Complex analysis

Instead, combinations of sines and cosines are most conveniently dealt with as
complex numbers. A complex number can be written as reiθ, where r is the
radius in the complex plane, and θ is the phase in the complex plane. In this
way, the real component is rcosθ and the imaginary component is rsinθ. It turns
out that this approach leads to a far more efficient way for a computer to deal
with taking Fourier transforms than other approaches do.

For taking the Fourier transform, what we want to do is to integrate our
function times ei2πft:

S(f) =

∫ +∞

−∞

s(t)ei2πft. (3)

Then, the real part of the output will give the coefficients of the cosines, and
the imaginary part will give the coefficients of the sines.

So this method is fine for getting an idea of what the Fourier transforms of
theoretical functions look like, but it’s an integral from −∞ to +∞, so we can’t
use it for working with data. Real data will have a finite duration, and a finite
sampling rate. What we want for working with data is to have a methodology
that works for discretely sampled, finite length data sets.

To deal with the discrete sampling, what we do is to assume that the function
can be represented by a finite number of sines and cosines. For evenly sampled
data sets, this leads to the Nyquist frequency – the maximum frequency that we
can deal with, which is half of the maximum frequency in the data set, because
we need to deal with sines and cosines. That is to say, if we have time resolution
of one millisecond (i.e. a sampling rate of 1000 Hz), we can measure variations
with frequencies no larger than 500 Hz. We also cannot measure frequencies
lower than 1/T , where T is the length of the data set. As a result, we have N
data points, and are, in essence, fitting N/2 amplitudes and N/2 phases to the
data. We call this a discrete Fourier transform.

2



Discrete Fourier transforms
A discrete Fourier transform is a transformation from a list of numbers to a

list of amplitudes and phases of sine/cosine waves at different frequencies. The
mathematical formulation is as follows:

Xk =

N−1∑
i=0

xne
−i2πkn/N , (4)

where we have a series of N values of x0 to xN−1 which are evenly spaced, and
wish to get the coefficients for the sines and cosines at frequency k. If we have
real numbers only, we can show that we get no information from the last N/2
frequencies, so that we do not need to compute them. This expression above,
then, is something that we could do on the computer. There is a process for
setting up complex variables in C++, but in my opinion, it’s not any easier
than just putting the real part of the complex number into one variable and the
complex part into another array, so I’m not going to spend time teaching it.
You are welcome to learn it on your own and use it if you want to give it a try.

Also, it will turn out that the obvious way to turn equation 4 into a computer
program turns out to be a really bad way to do it – it gives the right answer,
but it is a factor of a few hundred slower than it needs to be.

Practical application on a computer
Now that we have been through some of the theory of Fourier transforms,

we can consider how we will do them on the computer. Computer scientists,
and scientists who use computers, often like to describe how fast an algorithm is
based on how the number of operations on the computer scales with the number
of data points, or steps of some other kind that will be used. Constant factors
are ignored in this kind of analysis – the difference between taking 2N steps or
N steps isn’t what we concern ourselves with, but rather the difference between,
for example, taking N steps and N2 steps. The former causes us to have to wait
a bit longer for the program to run, while the latter can leave us with a very
limited range in the size scale of the problem we can attempt to solve.

Suppose we are applying some operation to all the elements on a line seg-
ment. That operation would take an amount of computer time proportional
to N where there are N elements on the line segment. Suppose further that
we were applying the operation to a square made of N line segments in each
dimension – then we would end up with a process that takes N2 time steps. If
we then went into even higher dimensions, then we would see that the process
goes as Nn, where N is the number of elements per dimension, and n is the
number of dimensions. This will be an important motivation for learning to do
Monte Carlo integration, a topic we will cover in a few weeks.

The Fourier transform would appear to be something that would take N2

steps – we have to consider N data points and N frequencies. An clever al-
gorithm, called the Cooley-Tukey algorithm was published in 1965 allowed the
computation of Fourier transforms in N logN steps. We won’t go into the de-
tails, but we will use the method. The original Cooley-Tukey algorithm works
only for data set sizes which are powers of 2. In some cases, this can lead to re-

3



quiring you to throw away nearly half your data, or to make up fake data points
in order to be able to use the rest of your data. There are other algorithms
that are a bit more flexible which are based on the same principles, but for this
assignment, I will just give you a data set on which to work which has a power
of 2 as its number of elements. I will also not explain how the Cooley-Tukey
algorithm works, except to say that it essentially divides the data into smaller
segments to deal with the Fourier transforms at the higher frequencies.

Using libraries

You should never re-invent the wheel, unless you think you can make a better
wheel, or you’re doing it as a learning experience. I am thus not going to ask
you to write a computer program that implements the Cooley-Tukey algorithm.
Instead, I’m going to have you use a routine from the GNU Scientific Library
that already does this. We will use the GSL libraries because they allow their
libraries to be used freely under all circumstances1. There is one catch, which
is that you cannot use them in proprietary software.

We will thus have to learn how to use libraries.
This very simple program is taken from the GNU Scientific Library web site:

#include <stdio.h>

#include <gsl/gsl sf bessel.h>

/*This program has been taken from the GSL web site */

/* http://www.gnu.org/software/gsl/manual/html node/An-Example-Program.html#An-Example-Program

*/

int

main (void)

{
double x = 5.0;

double y = gsl sf bessel J0 (x);

printf ("J0(%g) = %.18e\n", x, y);

return 0;

}

It includes the library file gsl sf bessel.h on the second line of the pro-
gram. There is then a call to a function gsl sf bessel J0 on a later line, which
computes a particular Bessel function’s value for x = 5. This is a function that
we haven’t defined – it’s within the library file.2

There’s another step we need to go through for making this work. We need
to tell the compile at the time we compile the program that we want to use
non-standard libraries. Generally, when you install a library on your computer,
you will see some instructions about how to link the libraries at the time you
compile. For this one, what you need to do is to add on -lgsl -lgslcblas

-lm, so you should type:
gcc test gsl.cc -o test gsl -lgsl -lgslcblas -lm

1Except in some cases where you want to make money selling the software you have pro-

duced using their routines as part of your own code
2We’ve actually been using functions like this all along. If you’re curious, or don’t believe,

me, try running printf without putting in stdio.h.

4



at the time you compile. You can also put these commands into a makefile, and
then just type make gsl test – this is something that you can teach yourself if
you’re interested. It will take you a bit of time to figure it out, but it will save
you a bit of typing. If you get to the point of building complicated programs
that involve a lot of subroutines in different files, you eventually need to learn
this, but it’s not necessary for a first course. If GSL is in a non-standard place
on the computer on which you’re working, you’ll need to do a few other things
to make it work.

5


