
Comptuational physics: syllabus and goals for
the course

The goals for this course are to develop in you the ability to write simple
computer programs to solve physics problems that require computers (or which
are much more easily solved by computers, in the case of things which you can
do with paper and pencil, but which must be done in a repetitive manner). In
order to do this, we will learn some basics of the Linux operating system and
the C programming language.

We will aim to get you to the level where you don’t need any more formal
programming classes unless you want to use advanced techniques like parallel
programming. This is not the same as saying that we will get you to the level
where you are fully proficient in all types of programming in C. That takes more
practice than would be reasonable to expect in a one semester class. One you
reach a certain level, however, you should be comfortable with looking things
up in a book or on google, and trying them out when you are confronted with
situations where you don’t know exactly what to do next.

The other main aim of the course is to teach you a bit of numerical analysis.
Like with programming, in the course of a semester, we cannot do everything.
Additionally, some types of numerical analysis involve having a higher level of
mathematical background than what is in just the prerequisites for this course.
Thus in many cases, I will mention some advanced topic by name in the notes,
but I will not teach it in detail. My goal with this is just that if, several years
from now, you are faced with a problem you don’t know how to solve, but that
sounds like a more challenging version of what you did in this course, there
might be a chance that you can look up a buzzword in my lecture notes, and
then investigate the topic yourself in detail.

We will cover the following topics and solve the following computational
problems:

1 August 26-30 Why we do computational physics
2 September 2-6 Some basics of Linux and gnuplot
3 September 9-13 Basic ideas of programming, and initial programs in C
4 September 16-20 Pointers, functions, and arrays in C
5 September 23-27 Fourier analysis
6 September 30-October 4 Root finding
7 October 7-11 Integration I: Simple numerical integration schemes
8 October 14-18 Integration II: Simple differential equations
9 October 21-25 Integration III: Monte Carlo integration
10 October 28-November 1 Curve fitting

11 November 4-8 Make-up time
12 November 11-15 Final project lab sessions
13 November 18-22 Final project lab sessions
14 November 25-26 Final project lab session
15 December 2-5 Final project lab session

1

The use of week 11 as “make-up time” is to allow for the possibility that
some topic may take a little bit longer to teach than I have anticipated. If all
goes well, we’ll cover another topic, with an unassessed assignment. For the first
10 weeks’ lessons there will be assignments due one week after the last lecture
on the topic. In each week, there will be one lecture and one lab session. I will
be present at the lab sessions to give you help with the assignments. I strongly
recommend that you make a try at the assignments before the lab session, so
that then you can approach me quickly with well-targeted questions, after you
have seen where you have gotten stuck.

Homework assignments

Week 1: None
Week 2: Making simple plots
Week 3: Simple algorithm development – long multiplication
Week 4: Making a calculator
Week 5: Find the pulsar; essay due
Week 6: Solving polynomials and other functions
Week 7: Solving integrals: I
Week 8: How far does a baseball fly?
Week 9: Hyperspheres
Week 10: Modeling of data
Week 11: No assignment
Week 12-15: Projects from the list of projects, to be given out soon

The final project will be due on December 9, which is during finals’ week.
There will be a range of choices for the final projects.

2

Comptuational physics: grading policies
For this course you will hand in 9 short, homework-length computer-work

assignments, one short essay, and one project-length assignment.
In each week, there will be a main assignment and a challenge problem. To

pass the course, you must complete all the main assignments successfully. This
means getting the right answers to the problems using a computer program you
have written yourself. I will not give any D’s in the course, except possibly in
the case where a student completes all the regular assignments and turns in a
very poor final project; if you successfully complete all the assignments, you will
get at least a C-, while if you do not successfully complete all the assignments,
you will get an F or an incomplete, depending on the circumstances of why you
have not completed the assignments.

You can then boost your grade from a C- for the bare minimum job all the
way up to an A+ for a truly exceptional job by doing the following:

1. Turning a well-written pseudo-code (if you don’t know what pseudo-code
is yet, relax – you’ll learn soon enough)

2. Writing a comprehensive and yet concise report on your work that you
turn in with your code

3. Commenting your code properly

4. Writing good, structured code

5. Completing the challenge problem

6. Coming up with an idea of your own of how to extend the problem I have
set you in a way that is not trivial

As one example of a way that you can always show some extra effort, you may
try different approaches to writing the program that both work, and determine
which one runs faster, or in some cases, which gives more accurate answers. The
purposes of giving higher grades for doing the challenge problem or for coming
up with an idea of your own are to encourage you to exercise some creativity
by indulging your own sense of curiosity, and to get you in a position to learn
more. At the same time, I don’t want to have a course that students who make
a good effort struggle to pass.

The purpose of these extensions beyond the basics are not just to give better
grades to students who spend more time working on the project; they should
be about going to deeper or broader levels of knowledge, and not just about
doing some extra busy work. The challenge problems will be things that require
you to give some more thought to the problem assigned. To earn an A+ on
an assignment, you will have to come up with something on your own that is
at least as difficult as the challenge problem and you will have to execute it
properly (with a few exceptions, for cases where I assign a challenge problem
that has some very difficult parts to it). If you receive an A+ in the course,
it will demonstrate some curiosity and creativity, in a way that will make it

1

very easy for me to write you good letters of reference in the future, since I will
have something specific to point to. Please bear that in mind if you find the
course a bit easy (if, for example you already have some significant programming
experience).

Applied Science and Technology requirement

This course counts for the core requirement for Applied Science and Tech-
nology, which will apply to those of you who started at Tech on or before Fall
2012. As a result, I need to give you an assignment related to ethics and tech-
nology. It will be to write a short essay about the free and open source software
movements.

Collaboration in the course

I strongly encourage students to discuss programming and physics with one
another as part of this course but you may not copy sections of one another’s
computer codes, and you should not be looking at another student’s screen while
you are working on your own code. You may look at another student’s screen in
order to get an idea of what they have done to make the program work, but then
you should go back to your own program and make sure that you understand
what to do before using the information you have just obtained. As a rule of
thumb, make sure that you could re-do the assignment locked in a room by
yourself.

Use of programs from the web and from books and journal articles

For the regular assignments for the course, you must write your entire pro-
grams yourself. You may use the programs I give you as a starting point, but
you may not download programs from the web and modify them, and you may
not copy code from your fellow students. These assignments are set up to drag
you through the basics of scientific programming in C. If you use programs I
give you, you should write your own pseudocode to explain how they work.

The final project is different – its goal is to ensure that you have some feel
for how to do science with a computer program. Thus, once you get to the
final project stage of the course, you should feel free to make use of functions
that you take from any source you wish, but not to make use of full programs
to do the job for you. If you use code from the web or a book, you must do
the following: (1) add a comment to the function that states exactly where you
found the code and (2) add comments throughout it that give me evidence that
you understand how it works OR run a series of tests that show that it does
what you think it is doing. The first is an issue of academic honesty, and while
the second is merely good scientific practice. While it’s important not to spend
too much time re-inventing the wheel, it’s also important to make sure that
you’re not using black boxes for vital things without being sure that they work.

I will even suggest that you may find the book Numerical Recipes in C

helpful in particular. That book gives reasonably good explanations of a broad
range of topics in numerical analysis, and it includes computer codes that work
for many of these topics.1 The book is available for free online. It represents

1The licensing rules for using the codes are fairly restrictive, so bear that in mind if you
decide to use them. It turns out that the GNU Scientific Library has free version of almost all

2

its authors’ best compromises between writing a book which is accessible and
which advanced the state of numerical analysis in physics. There are better
methods for a lot of things, but they are often hard to learn and implement and
not always worth the effort – but you should bear in mind later in your career
if you run into a tough problem that there may be better approaches in the
applied and computational mathematics literature.

Late work and failed assignments

Work will be penalized by one full letter grade if it is up to one week late. It
will be penalized by two letter grades if it is more than one week late. Any work
that is turned in which successfully completes the assignment will be given a
grade of at least a C-. If your first version of the assignment that you turn in is
totally unsatisfactory, then you may re-submit after receiving some comments
and get a C- grade on the assignment. All assignments must be received by
three days after the end of lectures for the semester, or you will receive either an
incomplete or an F for the course. You may choose to turn in all the assignments
on that deadline if you are happy with getting a C- for a grade, and you are
confident that nothing will have to be re-done, but I strongly recommend against
that approach.

Since this is a relatively small class, I can be flexible about deadlines in the
case of illness or serious issues in your personal life, but it will definitely be to
your advantage to get caught up as soon as possible if you have such problems,
since this is a course where we will continue to build on what we do throughout
the course.

Distribution of points from assignments

The first 10 weeks of the course will each have assignments, except for the
first week. One of these does not lend itself to being graded, and will just be
a pass/fail assignment. I will then drop your two lowest marks on the eight
assignments that are graded, as long as you pass all the assignments. In this
way, you won’t have to be overly stressed if you have midterms or other tests
for some other course, and don’t have time to complete the challenge problems
every week. After that, these will all carry equal weight, and will, together
make up 66% of your final grade. Then, there will be a final project which will
be worth the remaining 34% of your grade. For the final project, because there
will be no opportunity to re-submit, you will receive a passing grade for a good
attempt at the problem that shows that you made some progress in solving it.

The essay will be graded pass-fail. That is, you must turn in an acceptable
essay to pass the course, but beyond that, it will not affect your grade. It will be
due toward the end of week 5, so that you will have some time to make revisions
if I find your essay not to be acceptable.

(perhaps all) of the programs in Numerical Recipes, with the only licensing restriction being
that you cannot then incorporate the routines into software that is sold without the right for
people to copy and pass it on.

3

Comptuational physics
Motivations for learning computing as a physicist

There are a variety of reasons why anyone completing a physics degree should
develop a certain level of skill at computer programming. The two main aca-
demic reasons are to be able to solve problems that simply cannot be solved
with just paper and pencil, and to be able to work with the large data sets that
are becoming increasingly more common in most areas of physics. The other
major reason, of course, is that people who know physics and can do at least at
little bit of computer programming are in high demand in industry.

Numerical solutions to physics problemsMany of you may have already heard
terms like closed-form or analytic solution in physics classes. A function is said
to be written in closed form if it has been expressed in terms of a finite number
of “well-known” operations that lend themselves to calculation. “Well-known”
has different meanings, but generally means the functions that you learned
before you took your first calculus class – addition, subtraction, multiplication,
division, logarithms, roots, exponents, and trigonometric functions and their
inverses. The term analytic also includes some solutions to different kinds of
differential equations – these are functions which most mathematicians and
physicists will have heard of, and which may pop up if you try to get an answer
to something from e.g. Wolfram Alpha, but which will not be represented by a
button on a $20 calculator.

Whenever a solution can be expressed in closed-form, this is ideal. One
can then easily make plots of the functional form of the solution and develop
an intuition about how properties change with respect to one another. For
example, when I write that:

y = y0 + vy,0t−
1

2
gt2 (1)

x = x0 + vx,0t (2)

many of you immediately realize that whatever object we’re talking about
follows a parabola in space, and if I told you to prove that, by finding an
expression for y in terms of x, you could solve equation 2 for t = x−x0

vx,0

, and

substitute into equation 1. This is the power of a close-form solution – you can
integrate it into other work very easily.

Historically, it was quite useful to get equations expressed in analytic form
where closed-form solutions were not possible. The reason for this is that there
were books that tabulated the values of special functions like the Bessel function
or the error function (which is the integral of a Gaussian, something we will come
back to later in the course). One could then compute the numerical values of
analytic form solutions to problems much more readily than one can compute
the value of a non-descript, unsolvable integral.

In recent years, numerical solutions have become much more prominent in
physics. When we say we make a numerical solution to a problem, what we
mean is that we go back to the origins of calculus. Instead of using some pre-set
methods for solving integrals, we treat the integral as what it is – the area under

1

a curve. In the simplest approach, we put a bunch of little rectangles along the
function and add up the areas of the rectangles. Often other shapes will give
much better answers with fewer shapes, but we will get to that later in the
course.

The use of numerical solutions also us to re-visit some “classic” physics
problems. Before the advent of computers, physicists would often “cheat” to
solve problems by making approximations. A famous example is the small angle
approximation, in which sinθ or tanθ is set to be equal to θ for values of θ << 1
(remember: the angle must be in radians!). We can also add in air resistance
to our projectile problems, for example.

Now, an important point to bear in mind is this: being able to program a
computer in order to do a numerical problem does not absolve you from having
to learn math. There are several major reasons for this, even looking ahead as a
professional physicist (i.e. apart from your grades in classes). First, remember
that the closed form solutions to problems are always preferrable to any other
class of solution, because it’s so much easier to work with them. Second, in many
cases, if you do some clever algebra before you write your computer program,
you will be able to set up a program that takes many fewer cycles on the
computer’s processor to run. In some cases, you’ll want to use these advantages
to get better precision, and in others just to get the job done faster. Third,
you always want to be able to come up with some quick analytic expression to
check your computer code against. Coding mistakes are far more common than
algebra mistakes.

There are, of course, cases where our computers are still not powerful enough
to do everything we want to do, and so we have to fall back on classical ap-
proaches, or, in many cases, we need both to make approximations and use the
computer to solve the approximate equations.

Big data

In many fields of science, data sets are growing in size literally expoentially,
and the data sets in these fields are almost entirely digital. This has made it
both necessarily, and straightforward to analyze the data on computers, often
with considerably less human intervention than was the norm in the recent past.

Just to give some examples from my own field of astronomy: a large number
of projects now focus on detecting transient sources of light in the sky. These
may be supernova explosions, fast moving asteroids, outbursts from black holes
sucking in gas from their surroundings or any number of other things.

As recently as the mid-1990’s, surveys of large parts of the sky were still
done using photographic plates – basically something like old-fashioned camera
film, in which light interacts with silver causing chemical reactions to allow
detections of light. After being exposed on a telescope, the plates then needed
to be developed chemically.

Now, the data for projects done on optical telescopes are generally collected
using charged coupled devices (CCDs). These are digital detectors, which im-
mediately convert the photons they detect into electrons, which can then be
counted to measure the brightnesses of the objects being examined. The original
camera for the Hubble Space Telescope (which was launched in 1990) contained

2

an array of 4 800×800 pixel chips (i.e. about 2.5 Megapixels). More recent
projects make use of cameras with many Gigapixels. The data flow rate from
radio telescopes has increased similarly – the Very Large Array in New Mexico1,
for example, is in the process of having its data rate increase by a factor of about
20, as its electronics are being upgraded from the original 1970’s era electronics
to modern equipment.

At the present stage of transient search experiments, the detection of an
event that is a transient must be made by some automated computer routine.
There are simply too many images being taken every night, with too many
stars in each image, to have a human look at the data and see which objects
have varied. At the present time, the total number of transients is still small
enough that humans can examine the data to look at them. However, as even
bigger projects are built, this, too may become difficult, and people are working
on writing computer programs that would classify the transients based on the
data. Similar types of advances in data processing are going in most branches
of physics and, indeed, branches of all sorts of other science and engineering
fields.

What we will do in the course

So, having set some motivations out for doing a course in computational
physics as part of a standard physics degree, let’s set out the actual goals of the
course.

Working in a Unix-based environment

There are a variety of operating systems for computers. Most of you are
probably most familiar with using Windows or MacOS. MacOS is a Unix-based
operating system, although many people who use it do not take advantage of
its power.

The advantages of operating systems like Windows are also its disadvantages.
Most things are done by point-and-click. This approach makes it easier for the
user performing simple tasks to get started, but makes it more difficult to do
sophisticated things. In Unix, one can open a “shell” window, and interact at a
more basic level with files on the computer in a more straightforward manner.
This makes Unix the operating system of choice for a lot of the things that
most physicists do – if, for example, you want to perform the same analysis on
a large number of different data files. It is also generally true that there is a
better suite of free software available for Unix systems than for Windows. This
difference ranges from being mildly important to absolutely crucial depending
on one’s field of endeavor.

Plotting data

Graphical representation of data is a vital tool to (1) understanding what’s
happening in physics and (2) conveying that to other people. Throughtout the
course, you will plot your data. Part of your grade will be based on choosing
good ways to present your results. For example, if you want to show that
two quantities are related by a power law function, plotting the logarithms of

1This is the big Y-shaped set of 27 radio dishes that you may remember from the movie

Contact.

3

both will generally be more illuminating than making linear plots of both. For
exponential relations, you will want to take the log of only one quantity.

Understanding some basic numerical methods

Much of what you will do in this course will involve going back to the roots
of calculus and just adding up numbers repeatedly in order to do integrals.
However, there are schemes which can be far more efficient than others for
doing this sort of things. There are also cases where setting up the equations
incorrectly on the computer can lead to big errors, because the computer rounds
numbers off.

Some beginning of understanding error analysis and model fitting

We will look at how computers can be used to estimate parameter values
from experimental data. For example, suppose you tossed a ball in the air, and
measured its height a large number of times. How would you know (1) what g
is? And (2) what the initial velocity was with which you threw the ball? And
how do you take into account the uncertainties on the measurements that you
made? You can do this using a computer quite easily, and it is quite hard to do
in a precise, systematic manner by hand.2

Understanding the process of writing a computer program – and that it’s not

that hard

This is probably the most important thing to do in this course. As com-
puters have become more sophisticated, and software has become one of the
biggest sectors of society, tech-savvy students are often much more intimidated
by computer programming. The things that computers can do are much more
sophisticated now than they were 20 years ago when I was taking courses like
this one. Richard Feynman once said to the effect that people think physics is
difficult because they try to start at the end – they try to understand quan-
tum gravity without understanding how to solve pulley problems. Computer
programming can appear difficult in the same manner.

2You can, of course, get a decent guess by hand.

4

Getting started with Linux

We will be using the Linux operating system in this course. The chief ad-
vantages of Linux are the ease with which you can do complicated things, and
the large amount of high quality free software available. You will also probably
find that certain things run a bit faster and more smoothly, and there is also
the advantage that there are almost no viruses being written for Linux because
it isn’t used by enough people to justify the effort by the virus programmers1.
The advantages relative to MacOS are quite a bit smaller than the advantages
it has relative to Windows. Relative to MacOS, the main advantage is that the
hardware on which it runs is cheaper.

Linux has a much wider range of command line tasks available than Windows
does. It is also a little bit more straightforward to make what are called “scripts”
in Linux than in Windows, although this is possible in both operating systems.
We will not get into scripting in the course, but you may eventually want to do
it. It is a handy way to do things like run the same program repeatedly with
different parameter values, or run through a long list of tasks. Installations of
Linux also have a window manager, and you can still do most of the same thing
by pointing and clicking in Linux that you can do in Windows when pointing
and clicking is easier.

The first thing to do with Linux is to open up a terminal window. [figure
out how we do that in that particular flavor].

Next, let’s also open a web browser. Go to my course web-site:
and download the file helloworld.cc
Now, let’s move the file. In Linux, we use the term directory to refer to a

place where a group of files are located. It’s essentially the same as a folder on
a Mac or a Windows machine, but we just use a different name for it. In the
window managers, they’ll be represented with icons that look like folders.

To change directories to the directory called directory, we type:
cd directory

Programming languages

First generation languages

Computers work with binary codes. Sending different sets of “bits” to a
computer’s central processing unit will give it different instructions about how to
move other bits around in its memory or how to apply mathematical operations
to the bits in its memory. The most “direct” way to program a computer, then,
is to feed it a series of binary codes that tell it exactly what to do. This is
how the earliest computers, which were mechanical devices, worked, and for
some very specific applications, binary coding is still used. Machine language
programming is called a “first generation programming language”.

Second generation languages

The next step was to develop tools that allowed programmers to write
programs in something resembling plain English, and to be able to translate
those programs into machine code. These “second generation programming

1And, also, Linux users tend to be the most computer-savvy computer users.

1

languages”, are often referred to as Assembly (since the code needed to be
assembled into machine language). Assembly is generally machine-specific –
that is, the same program will not work on a PC and a Mac. This has major
disadvantages, of course, in that it requires the programmer to write separate
programs for different types of computers. It has some major advantages for
some very specific types of programming, in that it makes it possible for the
programmer to do some non-standard things that will allow the program to run
an the very fastest possible speed on that particular system. Getting the graph-
ics processing to run smoothly in video games is one particular application of
assembly language that still exists.

Compiled versus interpreted languages

Computers will only actually run machine language codes. There are two
ways to generate these – through the use of compiled languages and interpreted
languages. Compiling a computer program means taking the full program and
converting it from a language similar to plain English into machine code. Inter-
preting a program means doing this line-by-line. The programming process is
often a bit easier for an interpreted language – especially the process of going
through and finding mistakes. The big disadvantage of interpreted languages is
that they are often 30-100 times slower for the same task – for certain types of
tasks they spend far more time translating the same line of your program into
machine language than they do executing the tasks you’re interested in.

Third generation languages

The major breakthrough was the development of third generation program-
ming languages. These are languages that look something like plain English
and can be transported from one operating system to another. They are writ-
ten with the aim of being broadly applicable to a range of types of programs,
rather than with a few specific applications in mind. In this course, we will use
the C programming language. It is one of several third generation languages
widely used in physics. The other two are Python and FORTRAN.

Why C?

The C language is sort of a compromise choice among the three languages.
I wanted to give you some experience with a compiled language, so that if
you eventually need to work on a problem that will be very computationally
intensive, you can do it. I also wanted to give you experience to a language
that is widely used outside academia, so that you will have better job prospects
when you finish your degree if you decide not to go to graduate school.2

Python has some properties that allow it to do certain mathematical tasks

2FORTRAN has historically been a little better for certain kinds of computational projects

than C because it gives the user a bit less freedom to manipulate the computer’s memory –

meaning that the compiler can assume certain things to be true and not use computational

power checking that they are. There are now ways to force C compilers to assume the same

things, removing much or maybe all of FORTRAN’s advantages. FORTRAN is still a little

easier to program for a lot of tasks, and there are some very valuable old programs in FOR-

TRAN that are still modified and used. It’s not dead yet. C has a much better system set up

for user-interfaces, which is its main advantage – and it also caught on with a greater level

of popularity in computer science departments in the 1980s and 1990s, which is why it’s so

widely used now.

2

in ways that are much easier to program than in C or FORTRAN (e.g. you
can apply an operation to a vector in one line of code, instead of having to go
through all the elements of the vector), but it is much slower once it’s running
than FORTRAN or C. Eventually if you learn both C and Python, you can
decide which you will use based on how long you expect your program to spend
running. Generally speaking, C or FORTRAN programs will run about 30-100
times faster than python programs for the same job. If the job will take an hour
in python, then it will take a minute in FORTRAN or C. If you know you only
need to run the program once, and it will take an extra half hour to write the
program in FORTRAN or C than in Python, then you are probably better off
with Python – you can take a coffee break or work on another project while
it’s running. On the other hand, if you will have to run that same program 100
times, it may be worth that extra half hour of your human time to write the
program in FORTRAN or C.

Fourth generation languages

Fourth generation programming languages also exist. These are languages
designed to be very easy to program, but for a fairly narrow range of tasks.
Some examples include MATLAB, which is designed for engineering purposes,
and R/S which are languages optimized for statistical analysis. Both of these
can be of some value to physicists, but whether they are in a particular case
depends on how big your computational project is and how well matched it is
to the computer language you’re using. For example, MATLAB has a scripting
language, which is an interpreted computer language, and it has some compiled
routines. If you need to do tasks that can be done mostly by MATLAB’s
compiled routines, then the relative ease in developing the program, coupled
with what are sometimes better algorithms for doing the numerical tasks, may
make it advantageous to use MATLAB. If you need to do most of your tasks
under the MATLAB scripting language, which is interpreted, then you will
probably find your programs running extremely slowly. The other disadvantage
of many of the 4th generation languages is that they have expensive licensing
agreements (although there are some open-source, free alternatives for the most
prominent ones, which can provide nearly all of the same functionality).

Different levels of languages: an analogy to eating

I’ll lay out a good, if slightly imperfect analogy for you.

1. First level languages are like cooking food that you grew yourself. It’s
pretty hard to do anything complicated, but you really know what’s going
on with everything.

2. Second level languages are like picking food, then cooking it. It’s a lot
easier than the former, and you get pretty much all the same choices.

3. Third level languages are like cooking for yourself after buying food at the
grocery store. You might lose out a little bit in terms of just how well you
can do what you want, but it’s a lot easier process.

4. Fourth level languages are like eating at a restaurant. It’s a lot less work
for you, but it costs more. You also have a lot less control over how things

3

are done. Sometimes the expertise of the person doing the work for you is
high enough that it allows you to try something you couldn’t try otherwise.
Sometimes it just takes longer and isn’t any better. There are some things
which are 4th level languages that are aimed at specific applications in the
pure sciences which are free – but if it’s something engineers would also be
interested in using, it will often carry a charge. There are also knock-off
versions of many of these languages which are free.

Which type of language you should use is something that you will eventually
have to choose for yourself in a variety of different situations. For a lot of you,
after you settle into a career, you’ll find a fourth-level programming language
like MATLAB to be what you use most of the time. That’s fine, if the MATLAB
routines exist for the purposes you have in mind. You’ll generally find that you
can get the programs written faster in MATLAB than in some other language.

I’m not going to teach you MATLAB, however, for a few reasons. First,
you might end up going to a job or to a graduate school which doesn’t have
a MATLAB license. Second, you might end up needing to write programs to
do the kinds of things MATLAB isn’t optimized for. And third, it’s generally
easier to start with more a more general programming language and adapt to a
specific one than the other way around.

At the same time, I’m not going to teach you assembly language (i.e. a
second level language). The uses of assembly language these days are mostly
limited to optmizing codes for a very small range of specific applications. If you
think you might like to work in the video game industry, you should look into
that, but it’s not really something that is of use to many physicists – I’ve never
used it myself.

C vs C++

We will use the C++ compiler g++ for turning our programs into machine
code. The C++ compiler is “backward-compatible” with C programs – i.e. it
can compile programs written in standard C. It also has structures set up to
allow the use of a technique called object-oriented programming. The object
oriented approach can sometimes be better for very large group projects, but is
generally a bit more burdensome for doing small projects on your own or in small
groups. I will not teach any object-oriented techniques to you, so effectively I
will be teaching you to program in C, even though we will be using the C++
compilers.

An aside: LaTeX

Many of you may be impressed with how nice the equations look in the
notes I will send around to you. I am using a software package called LaTeX
for writing them. It is the standard way to write scientific papers for most
physicists, astronomers, mathematicians and computer scientists. For papers
with a lot of math in them, it can be a lot easier to work with than the Microsoft
equation editor. I am not going to teach LaTeX in class, because it’s one of these
things that you can learn by doing once you know what it is, and it’s not really
computational physics, but if you want to see a few sample copies of the original
files of my notes so that you can start teaching it to yourself, please feel free to

4

ask me for them. I didn’t start learning it myself until grad school, so don’t feel
like this is something you really need to do.

5

How to approach a computational problem
A lot of people find computer programming difficult, especially when they

first get started with it. Sometimes the problems are problems specifically re-
lated to writing programs – difficulties in dealing with the exact syntax the
computer demands from the programmer. A lot of the time, though, this is not
the case, and the problem is more basic. One major source of difficulty that
beginning programmers will often have is that they try to write the computer
program before they have properly thought about what they are trying to do.
This sort of impatience is human nature, especially if you’re learning to program
in a computer lab, while sitting in front of the computer terminal. It’s also very
bad practice and can lead to a lot of frustration.

As you first get started with programming, you should follow a few steps
before you start typing on the computer. As you become more experienced, you
may decide to take a more relaxed approach, and for simple tasks, that more
relaxed approach may lead to your getting the job done faster. For complicated
tasks, though, you should always follow certain elements of “good practice”.

Subroutines and pseudocode

We often refer to a finished computer program as a piece of “code.” The
essence of a computer program is that it is a means of encoding an algorithm
– a step-by-step procedure for performing some function, usually a calculation
– into a language that a computer can “understand.”1 Very often, what will
happen for beginning (and even experience) programmmers is that the computer
code is a correct implementation of an incorrect algorithm.

We need to remember that, without programming, computers can do only
a small handful of things – some basic input and output tasks, some shifting
around of data from one location in the computer’s memory to another, and
some basic arithmetic. Once we remember that the computer can do only these
things, but can do them perfectly,2 we understand the level of detail in which
we need to develop our algorithms in order to get them to work out.

What you need to do, then is to take the larger task you wish to accomplish,
and break it down into a set of smaller tasks. Eventually you will wish to get
to tasks so small that the computer can understand them. You will have the
most success in achieving your goals if you do this before you sit down at the
computer and start typing in a program.

There are a few key “buzzwords” for this sort of algorithm development –
structured code, subroutines, and pseudocode.

First, let’s discuss “structured code”. The nature of a structured code is that
it is built up from a main body with a set of subprograms, called subroutines.
The main body exists almost exclusively for calling the subroutines to be run
– and sometimes for determining whether enough of the subroutines have been
run. For very simple programs, one can get away with doing a bit more in the

1As we will discuss later, we actually need to take our codes written in a “high level”

programming language and convert them into machine language before the computer can

really “understand” them.
2We will discuss round-off errors in computer arithmetic later in the course – computers

actually don’t do certain types of math perfectly

1

main body, but as programs get more complicated, the main body really needs
to be kept as simple as possible, with the complexity moved to the subroutines.

The modularity of structured codes leads to several key advantages. During
the programming process, it becomes possible to split tasks up among sev-
eral programmers, if a code is especially complicated. Additionally, certain
subroutines are useful for a variety of purposes, and one can often find these
subroutines already written (e.g. the book Numerical Recipes contains a lot of
computer codes that can be applied to various tasks, mostly relevant to scien-
tific computing). There is also a package called the GNU Scientific Library that
contains libraries of routines written for use with C/C++ programs.

Consider the program compute sines.cc. You can look at this code and
see immediately that it first calls a subroutine readinvalues and then calls
a subroutine printoutsines. You do not need to be an expert in computer
programming to figure out what the basics of this program are, especially since
I have put comments in the subroutines. You can also see that if we wanted
to allow the user to decide whether to take a sine or a cosine wave, we could
have put in another subroutine, almost like the printoutsines routine, but
with a cosine function in it and called it printoutcosines3. We then could
have included sine or cosine as an option in the routine readinvalues, and a
“control structure” in the main body to use the user’s choice to decide which
of the subroutines. The main body of the code would get only slightly longer,
even as the code got much longer.

The other main advantage is that two programmers could work simultane-
ously on this program – one could write the input subroutine and one could
write the output subroutine, and then the full program could be put together
later on, and a third programmer could be added to write the cosine routine,
if that were deemed valuable. This program, and indeed, most of what you
are likely to do as an undergraduate, is simple enough that the amount of time
spent discussing exactly how to separate the work and how to make sure that
the pieces fit together at the end might not be justified by the additional in
person-power to the task4 – but you can at least see how a nice structured
program makes this much easier to do.

Pseudocode

So: how do we get to the point of writing a nice structured program, and
coding it in correctly? This, plus some basic understanding of some numerical
methods, is the whole point of our course. A lot of it will just take practice.
People who spend hours and hours writing computer programs tend to become
good at it. So, think about this once in a while when you are doing your
homework for other classes, or are working on lab reports, or anything else that
requires some mathematical analysis – and maybe perform a computational

3We could call it Fred too, if we wanted to, but we generally like to give subroutines names

that help describe what they do. But the program would still work with Fred

4There is an influential book in software engineering called The Mythical Man-Month

which suggests that sofware projects should generally be done with the fewest people possible

because having too many people working on the project means that too much time is spent

communicating about the project and not enough time is spent doing it.

2

solution to something, or use a computer program to model your data.
Let’s also remember the words of NFL Hall of Famer Vince Lombardi, who

said, “Practice does not make perfect. Only perfect practice makes perfect.”
There are some ways to approach writing a computer program that will allow
you to do a better job, right from the start.

The most important of these is writing a “pseudocode” before you start
programming. A pseudocode is a description of what your program will do that
is written out in plain English (with some mathematical notation where that’s
easier to understand than plain English). A good pseudocoding approach will
start from a top-down approach – give a list of fairly vague tasks that are “black
boxes”. Each of those black boxes is then specified further later on. The top
page then becomes the main body of the program, and each of the black boxes
becomes a subroutine. Some of the subroutines may need further subroutines,
of course.

In class, we will discuss the example of writing a pseudocode to make a
peanut butter and jelly sandwich.

Debugging

Writing computer programs is not easy for most people at first, but it’s
something that people generally become better at as they get more experience.
A lot of what you have to do is “trial and error” type work, but there are some
strategies that can make it go more quickly and less painfully.

There are two results of making a mistake in writing your program. The
first result is that the program fails to be compiled. This is usually the easy
kind of problem to fix, because the compiler usually gives you some advice in
the form of an error message, telling you what went wrong and in which line
of the program it went wrong. Often, in C, the problem will be as simple as a
missing semi-colon. Occasionally, the real problem will be elsewhere in the code
and will show up when it causes a fatal error somewhere else.

The other problem which can arise, which is harder to fix, is when your
program compiles and runs, but gives the wrong answer. In this case, there are
three main classes of mistakes:

1. Mistakes in designing the algorithm – that is, your plan for how the com-
puter should follow simple steps and get the answer you’re looking for is
incorrect.

2. Mistakes in coding the algorithm into the computer – that is, the idea
you have about how to break the problem up into simple steps is correct,
but you have made some error in terms of translating that idea from
pseudocode into actual computer code.

3. Typographical errors – these can include typographical errors in writing
the computer code, and also sometimes errors in the input data set you
send the computer.

When in doubt, print it out!
When you are trying to figure out where you have made a mistake in your

program, you should print out the results of the program to the screen, or to

3

a file that you can look at, or even send to a printer to get a paper copy. Not
only that, you should print out a lot of things that you wouldn’t normally need
to see – e.g. the intermediate results of calculations; lines that say you entered
a loop, and that you exited a loop; etc. Print out as much stuff as possible, and
then follow the problem through a simple example that you can calculate by
hand. Find where what you’re doing by hand differs from what the computer is
giving you. If at all possible, print out so much stuff that you locate the mistake
to within a few lines of computer code.

4

Getting started
We will now write the first C program that most people write, “Hello World”,

called helloworld.cc in the course web page.
/* Hello World program */

#include<stdio.h>

main()

{
printf("Hello World\n");

}

There are several key syntax things to notice about this program. First, I
have set apart the first line as a comment that tells me something about what
the program does. Second, I have included the standard input-output library.
Third, I have a section starting with main() – this is the main body of the
program. Fourth, I have printed something out within the main body of the
program. Note that there is a \n in the printf statement. That signifies to go
to a new lines afterwards.

Next, let’s try to move to a structured programming approach. Let’s make
that printout go inside a function.

/* Hello World program -- with a function */

#include<stdio.h>

void helloworld()

{
printf("Hello World\n");
return;

}

main()

{
helloworld();

}

Now we have void helloworld() before the main body of the program.
This is a function. The function is of “type” void.

An aside: data types
Functions and variables have “types” in C. The basic types are char, int,

float, and double, for characters (i.e. things which may not be numbers), in-
tegers, floating point numbers (i.e. real numbers), and double precision floating

5

point numbers.5 It is fine to use a float to store an integer, but if only integer
operations will be done, that will waste memory and CPU time.

Back to functions

A void function is a function that doesn’t return a value. Other functions
sometimes will return values and store them in variables in the main program.
Functions can also have variables that are passed to the function. There aren’t
any of those for the helloworld function, either, but if there were some, they
would go in the parentheses.

Next, we see that the main body of the program calls helloworld. Then
the program ends.

Reading in input from the user
OK - now let’s say we want to print out “Hello World” a bunch of times,

and we want to let the user decide how many times. Then we need to figure out
how to take input from the user. We use the scanf command here.

Take a look at the program helloworld3.cc now:
/* Hello World program -- with a function */

#include<stdio.h>

void helloworld()

printf("Hello World\n");
return;

main()

{
int i,numtimes;

printf("How many times do you want to print out a message?\n");
scanf("%i",&numtimes);

for (i=1;i<=numtimes;i=i+1)

{
helloworld();

}
}

There are a few things to notice here. First, we have to declare the time of
the variable numtimes6. Second, when we use scanf to read in a variable, we
have to put ‘‘%i’’ inside the quotes and an ampersand before the numtimes.

5We’ll get to the idea of precision later on, but double precision variables use twice as much

of the computer’s memory, and sometimes take longer to be used in computations, but they

are less susceptible to round-off errors.
6We also declare a type for i which we will use just a bit later.

6

The ‘‘%i’’ is there to tell the computer what type of variable to expect. The
ampersand is there for technical reasons that we’ll discuss next week, because
it’s something called a pointer.

Control structures

The next thing that we want to do in programs is to be able to have some
process where the computer can use some criteria to decide whether to keep
repeating a statement or not to. There are three of these in C: the for statement,
the while statement and the do while statement.

When we have a case where we want to do something a specific number of
times the for statement is the easiest way to go. We have a first line with the
starting point for a variable, the ending point for the variable, and the way we
change the variable as we go through the loop.

for (initial;final;increment)
{
set of tasks
}

Then we have a set of curly braces which include all the tasks that we
complete. At the end of the set of curly braces, we go back to the beginning
of the loop, after incrementing the variable by the amount specified in the
increment statement.

Sometimes we wish to have conditions that aren’t easily specified in a for

loop. We then have a couple other options: the while loop and the do while

loop. These are almost identical to one another – the only difference is that the
do while loop runs through one time before checking whether the condition to
continue running is met. The syntaxes are:

do

{
set of tasks
}
while (condition is true);
and

while (condition is true)
{
Set of tasks
}

There are many reasons for physics-related tasks why you might prefer to
use a while type loop rather than a for loop. For example, suppose you were
computing the trajectory of a projectile, and you wanted to stop your calculation
when the projectile hit the ground. If you already knew ahead of time how long

7

the projectile would be in the air (e.g. if you were neglecting air resistance)
then you could do this with a for loop – but then you probably wouldn’t need a
computer to solve the problem. If you don’t know how long the projectile will
be in the air, then you wouldn’t know what to make the maximum value of the
loop.

Conditional statements
The other kind of control structures we’ll want to work with are “condition-

als” – i.e. tasks that we only execute one time, and only if certain conditions
are met. In principle, we can always do this with a while loop, and the other
ways of coding things I will show you here just make things easier.

The workhorse command is the if command. The if command allows also
for else and else if statements, which, again, are unnecessary, but often quite
convenient. The following snippet of code could be used in a computer blackjack
game:

if (total==21)

{printf’’Blackjack!’’}
else if (total>21)

{printf’’Busted!’’}
else if (total<21)

newcard(deck[]);

There is also a syntax involving the commands switch and case, which can
make the coding for some tasks a bit tidier and easier to read (but really not
any easier to program), but which is not valuable enough to be worth the time
to teach in this class. If you have a menu of tasks you wish to run through,
you should feel free to google the syntax for using these commands and decide
if you wish to use them.

8

Pointers and arrays
There are two ways of working with data in C that go beyond what you

would normally think of as a single variable. These are pointers and arrays.
They are two very different concepts, but we will treat them together.

We already briefly alluded to the concept of the pointer last week when we
talked about how to read input from the screen. A variable on a computer has
two numbers associated with it – the location of the variable in the computer’s
memory, and the value of the variable, in the way that we normally think of it.

When C passes a variable to a function, it passes the value of the variable,
but not the memory location. What this means is that you cannot change the
value of the variable within a function. The way that you can work around this
is to use pointers to the location in memory. Then inside the function, you can
tell the computer to look up the value stored at that memory location, rather
than the memory location itself. This manner of dealing with variables stems
from the fact that C was originally developed with the goal of writing operating
systems, rather than the goal of doing numerical calculations – for running an
operating system, it is useful to be able to work with specific memory locations.
It takes a bit of getting used to, but after you get used to it, it’s not so bad.1

A pointer to a variable’s memory location is specified by putting an amper-
sand in front of it. The value of the variable stored in a memory location is
specific by putting an asterisk in front of the pointer.

Some basic rules on how to deal with pointers:

1. When you’re in the main program, and you want to send a variable to a
function, but don’t want to change it, use the variable name. This is the
simplest case – everything is intuitive.

2. When you’re in the main program, and you want to send a variable to a
function and do want the function to be able to change the value, send a
pointer.

3. When you’re then in the function and you wish to work with the variable
to which you have a pointer, you need to remember that it is a pointer
that you have and not the variable itself.

Here is an example, the program read numbers.cc. One of the lines is just
in there to print out both the pointer and the data value, and to show you that
the pointer is generally a very large integer which is meaningless unless you have
a lot of expertise in dealing with the innards of operating systems.

/* Simple program to read in number */

/* Really just demonstrates pointers*/

#include<stdio.h>

void read start vals(float *x, float*y,float *v, float *theta)

1This is the reason scanf needed an ampersand in front of the variable in the previous

week’s lecture. Even though we didn’t write the function scanf ourselves, it is still a function,

and if you want the program to change the value of the variable by reading something from

the command line, you need to use a pointer there.

1

{
printf("What is the initial value of x in m?\n");
scanf("%f",x);

printf("What is the initial value of y in m?\n");
scanf("%f",y);

printf("What is the initial value of theta in degrees?\n");
scanf("%f",theta);

theta=*theta*pi/180.0;

/*This is to convert theta into radians, since C does trig in rads

*/

printf("What is the initial value of v in m/s?\n");
scanf("%f",v);

printf("For x, the memory value is %li and the actual value is return;

}

main()

{
int i,imax;

float x,y,v,theta,vx,vy,t,fx,fy;

read start vals(&x,&y,&v,&theta);

printf("%f %f %f %f \n",x,y,v,theta);
}

Arrays

The other type of data that we have to learn to deal with is data stored in
arrays. An array is basically the computer equivalent of a vector or a matrix
(or tensors when you eventually get to them). It’s a set of numbers sorted in a
particular way and stored in a single variable.

There are a few things to remember. First, in C, the vectors start from
element number 0, rather than from element number 1. In many other pro-
gramming languages vectors start from element 1. Second, the way that we
pass elements to functions is as the whole array, without using symbols indicat-
ing they’re pointers. When we have the whole array, the compiler assumes that
it is a pointer to the first element of the array, and then you can work with the
variables as though you had passed a pointer. However, when you send a single
element of an array to a function, you need to use a pointer symbol. Take a
look at this program, which reads in two arrays of user-defined size, and then
takes their dot product:

2

/*This is a simple program to read two vectors and compute their

dot products */

#include<stdio.h>

#include<math.h>

#include<stdlib.h>

#define MAX DIM 10

void readinvalues(double vector1[], double vector2[],int *dimensions)

{
/*At the top, we just use vector1[] because C knows we want to use

*/

/*a pointer to the whole array */

int i;

do

{
printf("How many dimensions do the vectors have?\n");
scanf("%i", dimensions);

}
while (*dimensions>MAX DIM);

for (i=0;i<*dimensions; i=i+1)

{
printf("Enter vector 1, element %i\n",i);
scanf("%lf",&vector1[i]);

}
for (i=0;i<*dimensions; i=i+1)

{
printf("Enter vector 2, element %i\n",i);
scanf("%lf",&vector2[i]);

/*Down here, we need to specify that it’s a pointer to vector2[i] */

/*because it’s a single element we’re passing to another function*/

}
return;

}

double dotproduct(double vector1[],double vector2[],int dimensions)

{
int i;

double dp;

dp=0.0;

for (i=0;i<dimensions;i=i+1)

{
dp=dp+vector1[i]*vector2[i];

/*Here, we leave vector1[i] alone, rather than putting an */

/*asterisk before it, because we are not passing it to */

/*another function. */

printf("i,vector1,vector2= %i %lf %lf\n",i,vector1[i],vector2[i]);

3

}
return(dp);

}

main()

{
int dimensions;

int i;

double vector1[MAX DIM];

double vector2[MAX DIM];

double dp;

readinvalues(vector1,vector2,&dimensions);

dp=dotproduct(vector1,vector2,dimensions);

printf("The dot product is: %lf\n",dp);
}

You can also specify multi-dimensional arrays – for example to do matrix
calculations. It can also be a convenient way to keep the position and velocity
for an object – that could be a 2× 3 array, with:
x[0,0] = x

x[0,1] = y

x[0,2] = z

x[1,0] = vx

x[1,1] = vy

x[1,2] = vz

Choices like this are often a matter of taste, rather than a matter of what is
the best way to do a programming problem. The choice to put both the position
and velocity into the same variable is likely to make it a little bit easier to get
the code written without making a mistake, but a little bit harder for someone
knew coming to the problem to change the code if you do not comment it well.

4

Fourier analysis
This week, we will learn to apply the technique of Fourier analysis in a

simple situation. Fourier analysis is a topic that could cover the better part of
a whole graduate level course, if we explored it in detail, but it’s also something
where in a single lesson, along with a bit of the work from the student, you
can go from zero knowledge to being able to do some useful things – you will
be exposed to the Fourier transform here, and will develop a tool you can use
to compute Fourier transforms, but you should expect that you will have to
do a lot more learning if, e.g. you run into a research problem that requires a
deep knowledge of Fourier transforms. The Fourier transform is one of the most
commonly used mathematical procedures across a wide range of scientific and
technical disciplines. It is a process which converts a function into a set of sines
and cosines.

Often, we perform what is called a discrete Fourier transform. A function
is a continuous set of values. Of course, no experiment will give us a truly
continuous set of values, so instead, we will want to have a recipe that can take
a set of discrete values, and find the set of functions that describe it. There
will be some limitations to the process (e.g. we will not be able to figure out
how something is varying when it varies much faster than speed at which we
collecting the data).

I will give examples based on the assumption that some quantity is varying
in time, but the math can be applied to spatial variations (or variations with
respect to some abstract quantity) as well.

The simple, intuitive approach

There is a simple approach to figuring out what a Fourier transform means,
which is something that can be used to compute a Fourier transform. There is
a mathematical approach called matched filtering which can be used in its very
simplest form here.

Let’s consider some arbitrary function, f(x). It ranges from −1 to +1 in
value. How can we figure out what it is? We can take some other function
whose value we know, and we can multiply the two functions together, and take
the integral of the result. If the two functions are the same, then the value of
the new function is f2(x). If the two functions are different the value will be
something smaller. This is a trivial case, of course, because if we already know
the function f(x), we wouldn’t try to represent it as a single function.

Let’s consider a slightly different case, that we have a function f(x) which we
think is made of the sum of a set of sine waves (or, equivalently, with just a phase
shift, cosine waves), but we don’t know what the frequencies, normalizations or
phases of the sine waves are. Then we wish to multiply the function by every
sine wave possible, and see where the integrals come out big and where the
come out small. This seems like a daunting job, especially when we consider
the infinite number of phases we’d need to check.

We can actually get around the phase problem simply by using a little bit

1

of high school trigonometry.

sin(a+ b) = sinacosb+ sinbcosa. (1)

Thus we can take:

sin(2πft+ θ) = sin(2πft)cosθ + sinθcos(2πft). (2)

We can then see that our original function can be expressed as a sine com-
ponent with a particular frequency and a cosine component with the same fre-
quency, and the relative normalizations of the two components will determine
the phase. The phase issue is thus easily converted from an infinite set of possi-
bilities, to just the requirement that we check the normalizations of all the sines
and all the cosines.

Thus, for analytic functions we can produce an integral over the sines and
an integral over the cosines, and find the coefficients of the sines and cosines. I
will spare you the detailed math on this, since it’s not the normal way of doing
things.

Complex analysis

Instead, combinations of sines and cosines are most conveniently dealt with
as complex numbers. A complex number can be written as reiθ, where r is
the radius in the complex plane, and θ is the phase in the complex plane. In
this way, the real component is rcosθ and the imaginary component is rsinθ. It
turns out that this approach leads to a far more efficient way for a computer to
deal with taking Fourier transforms than other approaches do.

For taking the Fourier transform, what we want to do is to integrate our
function times ei2πft:

S(f) =

∫ +∞

−∞

s(t)ei2πft. (3)

Then, the real part of the output will give the coefficients of the cosines, and
the imaginary part will give the coefficients of the sines.

So this method is fine for getting an idea of what the Fourier transforms of
theoretical functions look like, but it’s an integral from infty to +∞, so we can’t
use it for working with data. Real data will have a finite duration, and a finite
sampling rate. What we want for working with data is to have a methodolgy
that

Discrete Fourier transforms
A discrete Fourier transform is a transformation from a list of numbers to a

list of amplitudes and phases of sine/cosine waves at different frequencies. The
mathematical formulation is as follows:

Xk =

N−1∑
i=0

xne
−i2πkn/N , (4)

where we have a series of N values of x0 to xN−1 which are evenly spaced, and
wish to get the coefficients for the sines and cosines at frequency k. If we have

2

real numbers only, we can show that we get no information from the last N/2
frequencies, so that we do not need to compute them. This expression above,
then, is something that we could do on the computer. There is a process for
setting up complex variables in C++, but in my opinion, it’s not any easier
than just putting the real part of the complex number into one variable and the
complex part into another array, so I’m not going to spend time teaching it.
You are welcome to learn it on your own and use it if you want to give it a try.

Also, it will turn out that the obvious way to turn equation 4 into a computer
program turns out to be a really bad way to do it – it gives the right answer,
but it is a factor of a few hundred slower than it needs to be.

Practical application on a computer
Now that we have been through some of the theory of Fourier transforms,

we can consider how we will do them on the computer. Computer scientists,
and scientists who use computers, often like to describe how fast an algorithm is
based on how the number of operations on the computer scales with the number
of data points, or steps of some other kind that will be used. Constant factors
are ignored in this kind of analysis – the difference between taking 2N steps or
N steps isn’t what we concern ourselves with, but rather the difference between,
for example, taking N steps and N2 steps. The former causes us to have to wait
a bit longer for the program to run, while the latter can leave us with a very
limited range in the size scale of the problem we can attempt to solve.

Suppose we are applying some operation to all the elements on a line seg-
ment. That operation would take an amount of computer time proportional
to N where there are N elements on the line segment. Suppose further that
we were applying the operation to a square made of N line segments in each
dimension – then we would end up with a process that takes N2 time steps. If
we then went into even higher dimensions, then we would see that the process
goes as Nn, where N is the number of elements per dimension, and n is the
number of dimensions. This will be an important motivation for learning to do
Monte Carlo integration, a topic we will cover in a few weeks.

The Fourier transform would appear to be something that would take N2

steps – we have to consider N data points and N frequencies. An clever al-
gorithm, called the Cooley-Tukey algorithm was published in 1965 allowed the
computation of Fourier transforms in N logN steps. We won’t go into the de-
tails, but we will use the method. The original Cooley-Tukey algorithm works
only for data set sizes which are powers of 2. In some cases, this can lead to re-
quiring you to throw away nearly half your data, or to make up fake data points
in order to be able to use the rest of your data. There are other algorithms
that are a bit more flexible which are based on the same principles, but for this
assignment, I will just give you a data set on which to work which has a power
of 2 as its number of elements. I will also not explain how the Cooley-Tukey
algorithm works, except to say that it essentially divides the data into smaller
segments to deal with the Fourier transforms at the higher frequencies.

Using libraries

You should never re-invent the wheel, unless you think you can make a better
wheel, or you’re doing it as a learning experience. I am thus not going to ask

3

you to write a computer program that implements the Cooley-Tukey algorithm.
Instead, I’m going to have you use a routine from the GNU Scientific Library
that already does this. We will use the GSL libraries because they allow their
libraries to be used freely under all circumstances1. There is one catch, which
is that you cannot use them in proprietary software.

We will thus have to learn how to use libraries.
This very simple program is taken from the GNU Scientific Library web site:

#include <stdio.h>

#include <gsl/gsl sf bessel.h>

/*This program has been taken from the GSL web site */

/* http://www.gnu.org/software/gsl/manual/html node/An-Example-Program.html#An-Example-Pr

*/

int

main (void)

{
double x = 5.0;

double y = gsl sf bessel J0 (x);

printf ("J0(%g) = %.18e\n", x, y);

return 0;

}

It includes the library file gsl sf bessel.h on the second line of the pro-
gram. There is then a call to a function gsl sf bessel J0 on a later line, which
computes a particular Bessel function’s value for x = 5. This is a function that
we haven’t defined – it’s within the library file.2

There’s another step we need to go through for making this work. We need
to tell the compile at the time we compile the program that we want to use
non-standard libraries. Generally, when you install a library on your computer,
you will see some instructions about how to link the libraries at the time you
compile. For this one, what you need to do is to add on -lgsl -lgslcblas, so
you should type:
gcc test gsl.cc -o test gsl -lgsl -lgslcblas -lm

at the time you compile. You can also put these commands into a makefile, and
then just type make gsl test – this is something that you can teach yourself if
you’re interested. It will take you a bit of time to figure it out, but it will save
you a bit of typing. If you get to the point of building complicated programs
that involve a lot of subroutines in different files, you eventually need to learn
this, but it’s not necessary for a first course. If GSL is in a non-standard place
on the computer on which you’re working, you’ll need to do a few other things
to make it work.

1Except in some cases where you want to make money selling the software you have pro-

duced using their routines as part of your own code
2We’ve actually been using functions like this all along. If you’re curious, or don’t believe,

me, try running printf without putting in stdio.h.

4

Numerical integration
Many times in physics we will encounter important and interesting problems

for which we can write down the equations governing the system, but for which
we cannot solve the equations in closed form. There are some very simple,
well-defined functions for which the integral can be computed only numerically.

One extremely important example is the Gaussian:

g(x) = exp−
(x−x0)2

2σ2 . (1)

The Gaussian is also sometimes called the normal distribution. It can be shown1

that adding together large numbers of distributions almost always eventually
produces a Gaussian distribution – this is called the central limit theorem, and
you should encounter it in your first course on statistical mechanics, if not
sooner.

One thing that is almost always distributed as a Gaussian is the background
noise in an experiment.2 That is to say, if you make a huge number of measure-
ments of something, and plot the probability that each measurement will be in a
small range between x and x+ δx, that function will be a Gaussian in most real
world cases. For this reason, if we want to estimate the probability that some
measurement is really telling us about something besides the fluctuations in the
background, then we want to be able to integrate out the Gaussian distribution.

Pitfalls for any summation process on a computer

Any time you are summing numbers on a computer, you need to be aware
of round-off errors. The computer allocates only a certain amount of memory
to writing down a number, and then records a number in binary notation which
is as close as possible to the actual number. This is part of the reason we
make integers a separate data type on the computer. The amount of memory
allocated to a floating point number will vary from computer to computer.3

Morten Hjorth-Jensen from the University of Oslo has a nice set of notes
on computational physics which is a little bit too advanced, in general for this
course, but which provides a nice example of something we can do to see the
effects of round-off error. We can just sum (1/n) from 1 to 1,000,000 (or some
other large number), and then take the same sum going in the opposite direction.
I have written a version of the program myself, and it’s called sum 1 n.cc on
the course program web page.

On my laptop, I ran this program with regulat floating point precision, and
got 14.357358 going forward (i.e. starting at 1), and 14.392652 going backward.
I then changed the data type to double and I got 14.392727 for both numbers,

1Whenever a physicists or a mathematician uses the phrase “It can be shown” you should
usually assume that whatever comes after that is (1) a well-established result and (2) probably
requires about 15 minutes or more of algebra on the blackboard. You can almost always assume
that “it can be shown” also means “it won’t be shown”.

2One notable exception is the rates of counting events when those rates are small. Then
they follow something called the Poisson distribution. When the rates become large, the
Poisson and Gaussian distributions converge to one another.

3gcc -dM -E - </dev/null | grep FLT will print this out for you for a standard float,
and you can change FLT to DBL to see what happens with double precision numbers.

1

although the numbers weren’t strictly equal at the machine accuracy level, but
rather at the level at which I outputted them to the screen.

Addition is not normally the problem, unless you do an enormous number
of addition operations, though – subtraction is much tougher for a computer to
do correctly. Any time you subtract a number which is almost as big as the
number you started with, you risk running into some problems. A nice example
of this, which I take from Wikipedia, but check myself, is that of the quadratic
equation. Suppose you are trying to solve a quadratic equation:

ax2 + bx+ c = 0 (2)

using the quadratic formula you learned in high school:

x =
−b±

√
b2 − 4ac

2a
. (3)

In some cases, if you try to do this on your calculator, you will get the
wrong answer, and the same thing will be true on a computer in floating point
arithmetic. The main source of problems will arise when |b| >> c – when that’s
true, then one of the roots will be very close to zero and the other will be very
close to −b.

In all cases, there are a few other formulae that we can use. We can see that
the roundoff error in the−b value will be pretty small, as a fraction. Then we can
use a formula from the French mathematician François Viète, who proved that
x1x2 = c

a
, where x1 and x2 are the roots of the quadratic. We can find the root

that is computed accurately (i.e. with addition, rather than subtraction) and
then the other root will be c/a times the reciprocal of the first root. Whether
the root involving taking the positive or negative square root is more accurate
depends on the sign of b. This is coded up in the function viete formula in
the program solve quadratic.cc.

In summary:

1. Subtraction (or, more precisely, addition of numbers with different signs)
is the process that causes the worst round-off error, but round-off error is
always possible, even with addition

2. Doing large numbers of calculations also increases the chance of getting
bad round-off errors

3. You can often reduce the errors using clever numerical methods. Also, you
can often find the clever methods in an applied math book if you know
where to look.

Methods for numerical integration

Now that we have discussed the issue of numerical round-off error, we can
move on to doing numerical integration on the computer. The reason we first
discussed the case of round-off error is that a lot of numerical integrations in-
volve doing an extremely large number of additions, and so numerical round-off
becomes something of which you should be aware.

2

Rectangular integration

The simplest method of doing numerical integration is called the rectangular
rule method. This basically involves turning the basic expressions of calculus
into a discrete summation (i.e. if you are integrating over x, instead of taking
the limit as δx goes to 0, set δx to some small, finite value).

This method is simple to code and simple to understand; those are its ad-
vantages. Its main disadvantage is that for functions which change quickly, the
step sizes in the integration need to be very small in order to allow it to converge
quickly. The errors in one step are of order the square of the step size, and the
overall error is of order the step size – so making the steps smaller to get faster
convergenece of the integral to the correct answer helps only at the cost of a
much larger number of steps being used. Using a very large number of steps
increases the effects of numerical round-off error, and, usually more importantly,
increases the amount of time the computer program takes to run.

Despite these disadvantages, this method is a good place to start learning,
and works effectively for a variety of relatively simple problems. Mathematically,
we just need to find the value of :

I ≈ f(a)× (b− a), (4)

where I is the integral we wish to compute. Then, we can sum the values of a
series of these rectangles up, with the widths made smaller and smaller to allow
for more accurate computations.

Often, this rule is adapted into something called the trapezoidal rule by
taking the average of the function values at the start and end of each step.

I ≈ (f(b) + f(b))/2 ∗ (b− a) (5)

This is practically the same thing, especially as the number of steps taken
becomes large. It becomes exactly the same rule if after going through the
process one subtracts half value of the function at the start point and adds half
the value of the function at the end point – so the most efficient way to compute
the trapezoidal rule is actually to use rectangles with only the start point values,
and then make the small adjustment at the end.

The errors in numerical integration procedures are usually written out as a
coefficient, times the difference between the start and end values of the domain
of the integral, times some nth order derivative of the function at some value
between the start and end values of the domain. Or, as an equation, perhaps
more simply, if we are integrating f(x) from a to b, using steps of size ∆ (in
this case, the domain is broken into N segments of width ∆ = (b− a)/N):

E ≤ (b− a)∆2

24
f (2)(ξ) (6)

gives the error on the integral. In this expression f (2) refers to the second
derivative of f , and ξ is a number between a and b.

Simpson’s rule

3

Simpson’s rule is a simple way to compute integrals that gives exact values for
polynomials up to cubic functions, and which converges to the correct answer
much faster than Euler’s method for most other functions. Simpson’s rule is
based on the idea that for each interval, the integral can be approximated by:

I ≈
∑ b− a

6
[f(a) + 4f(

(

a+ b

2

)

+ f(b)]. (7)

Simpson’s rule has an error that goes as (b−a)5

2880 f (4)(ξ). Thus for functions
with very small third derivatives, the rectangular rule may actually converge
faster, but otherwise Simpson’s rule should converge faster – that is to say,
usually fewer steps can be used with Simpson’s rule to get the same level of
accuracy as with the trapezoidal rule.

More terms can be added to the process in order to get even faster conver-
gence. There exist things called Simpson’s 3/8 rule (which has errors a factor
of about 2.5 smaller, and uses four values per interval instead of 3) or Boole’s
rule (which uses 5 values per interval, and then scales with the sixth derivative
of the function). We won’t use these in class, but it might be useful for you to
be aware of them at some time in the future.

Going beyond the simple approaches

If you have an especially hard integral to compute, and you wish to get the
answer as exactly as possible with a reasonable amount of computer time, there
are some things you can think about doing. First of all, there are some kinds of
functions for which there are entirely different approaches which can be taken.
If, for example, you have a function with only small, known, deviations from a
polynomial, you can use something called Gaussian quadrature. If you have a
function which varies very smoothly, or which has very small values, in some
regions in x and which varies quickly, and/or takes large values in some regions,
you may choose to have adjustable step sizes.4

4If your function is easily differentiable over a wide range of values, then you can figure out
if this is likely to be a useful thing to do by computing its fourth derivative, since the error in
Simpson’s rule calculations scales with fourth derivative.

4

Numerical integration for solving differential
equations

After integration, it is natural to consider how to find numerical solutions to
differential equations on the computer. Simple equations of motion lead to 2nd
order differential equations. In the case of constant acceleration, we see that:

v = at+ vo, (1)

so,

x =
1

2
at2 + v0t+ x0. (2)

However, if the force and hence acceleration is related to the position or the
velocity in any way, then we cannot just to simple integration in closed form
(or at least not simple integration of the form that one typically learns in a first
calculus class). 1

There are still plenty of such problems that can be solved in closed form.
Let’s consider two problems that come up a lot in a first classical mechanics
course – the ideal spring which follows Hooke’s Law, and the simple pendulum.
In an introductory classical mechanics course, we will usually use the small
angle approximation, and say that sinθ = θ, which then reduces the math for
a pendulum’s angular motion to being basically the same as the math for a
spring’s linear motions. It’s a pretty good approximation, but it’s not quite
right, and the differences are something that you could measure in a lab fairly
easily.

So, the equations of motion of a pendulum are:

α =
−g

l
sinθ =

dω

dt
, (3)

and
dθ

dt
= ω. (4)

For if we make the small angle approximation that sin θ = θ, then we get:

d2θ

dt
=

−g

l
θ, (5)

which we can solve by inspection to give a sine wave with frequency
√

g/l.
If we don’t make the small angle approximation, there is no closed form

solution to the differential equation.

1Historically, these problems were solved by perturbation analyses – one would solve a
problem that was almost the problem that one wanted to solve, and then figure out how to
make small changes to the solution based on the small deviations from the soluble problem.
This kind of approach is still often useful for two purposes – (1) it can sometimes guide an
efficient approach to finding the numerical solution to the problem and (2) it can sometimes
produce simple formula which are approximately correct, and which can guide understanding
of what really happening in a way that the outputs of a thousand computer simulations often
cannot.

1

There are a few approaches to solving differential equations on a computer.
The simplest, by far, is Euler’s method, which is basically like the rectangular
rule that we talked about for solving simple integrals last week. Instead of
trying to solve a second order differential equation, what we do is we split it
into two first order differential equations, and then solve each of them. We look
at the force law to solve the equation to get the velocity, and then we look at
the velocity to get the equation for the position.2

Let’s lay this out in abstract terms. We have two variables, x and t. We
want to solve for x as a function of t. Let’s let the second derivative of x be a
function of x itself, and maybe also of the first derivative of x. We define a new
variable v to be dx

dt
.

We just set:

xi+1 = xi +
dx

dt
×∆t (6)

vi+1 = vi +
dv

dt
×∆t (7)

dv

dt
= f(x, v) (8)

We can now solve this on the computer, as long as we can write down the
expression for f(x, v). As an example of how to do this, I have written a program
to solve the pendulum problem with Euler’s method.

/* Pendulum program */

#include<stdio.h>

#include<math.h>

#define g 9.8 /* sets g for use throughout the program*/

#define deltat 0.001 /*sets a timestep value for use throughout the

program*/

float euler(float x,float xdot)

{
/*This function just increments a variable by its derivative times

*/

/*the time step. This is Euler’s method, which is a lot.*/

/*like the rectangular rule for evaluating a simple integral. */

x=x+xdot*deltat;

return(x);

}

void read start vals(float *theta, float *length)

{
printf("What is the initial value of theta in degrees?\n");
scanf("%f",theta); /*theta is already a point so no & needed */

/*The next line converts theta into radians */

2For the pendulum, really, we’re looking at torques, angles, and angular velocities, of
course, but the math is applicable to a wide range of problems.

2

*theta=*theta*M PI/180.0; /*M PI is pi defined in math.h */

/* An asterisk is needed for theta because we want the value*/

/* at the memory address of the pointer, not the address itself*/

printf("What is the length of the pendulum in m?\n");
scanf("%f",length);

/*Like in the case where we read in theta, we already have a pointer

*/

/*So no ampersand is needed.*/

return;

}

float angular acceleration(float theta,float length)

{
float alpha,omega;

alpha=-(g/length)*sin(theta);

/* This is just first year physics, but before we make the small

angle approximation. */

return alpha;

}

main()

{
int i,imax;

float alpha,theta,omega,length,t,kineticenergy,potentialenergy,totalenergy,velocity;

FILE *fp;

/*Above lines define the variables*/

/*Mass is ignored here, since it falls out of all equations*/

/*To get energy in joules, etc. would have to add a few lines of code*/

fp=fopen("./pendulumoffset","w"); /* opens a file for writing the output*/

t=0;

omega=0;

/*The two lines above make sure we start at zero.*/

read start vals(&theta,&length); /*Reads initial offset and length of

pendulum */

for (i=0;i<50000; i=i+1) /*Starts a loop that will go through 50000

time steps */

{
alpha=angular acceleration(theta,length);/*Computes angular accel.

*/

omega=euler(omega,alpha);/*Changes the angular velocity by Euler meth.

*/

theta=euler(theta,omega);/*Changes angle by Euler meth.*/

potentialenergy=g*length*(1.0-cos(theta));/*Computes grav. pot en.*/

velocity=omega*length;/* Computes linear velocity*/

kineticenergy=0.5*velocity*velocity;/*Computes kin. en */

totalenergy=potentialenergy+kineticenergy;/*Computes total energy*/

3

t=t+deltat;/*Increments the time*/

fprintf(fp,"%f %f %f %f %f %f\n",t,theta,omega,kineticenergy,potentialenergy,totalenergy)
Prints out the key variables*/

/*Note: keeping track of the total energy is a good way to test a*/

/*code like this where the energy should be conserved*/

}

fclose(fp);/*Closes the file*/

}

The big disadvantage of the Euler method is that it tends to give answers
which get worse and worse with time. This is actually true for all numerical
integration schemes for solving differential equations for nearly any problem.
Problems like this one, for which the solutions are periodic are less troublesome
than problems for which the solution could go off in any directions. First – in
this case, it’s obvious that the solution will be periodic, even if the solution is
not a sine wave, so we have a sanity check 3

The next level up in complication is a method to do something sort of like
what we did with Simpson’s rule, and to try to do something to take into
account the curvature of the function for which we are solving. There is a
family of methods called Runge-Kutta methods which can be used for solving
differential equations more precisely than the Euler method can in the same
amount of computer time. In this class, we will use the “classical Runge-Kutta”
method, which provides a good compromise among simplicitly, accuracy, and
computational time needed. It is also sometimes called the RK4 method, since
it is a 4th order method in the seconds that the errors per step scale with the
step size to the 5th power, so the total errors scale with the step size to the 4th
power.

Let’s first lay out the method for the simplest case, where we are solving a
first order differential equation:

dx

dt
= f(t, x), (9)

along with which we will need a boundary condition, that at t0 x = x0.
Now, we integrate this out with something analogous to Simpson’s rule:

xi+1 = xi +
1

6
∆t(k1 + 2k2 + 2k3 + k4), (10)

3You may have also noticed that I computed and printed out the energy in this system to
make sure that it was conserved which is another sanity check.

4

where the kn values are given by taking:

k1 = f(ti, xi)

k2 = f(ti +
1

2
∆t, xi +

∆t

2
k1)

k3 = f(ti +
1

2
∆t, xi +

∆t

2
k2)

k4 = f(ti +∆t, xi +∆tk3)

(11)

What is going on in this set of equations is that a series of estimates of
the derivative of x with respect to t are being made. The first is the Euler
method’s approximation. The second makes an estimate of the value of x half
way through the time step, based on using the value from k1, and just adds half
a time step to the time. The third makes another estimate based on adding half
a time step, but now using the value of the position based on k2, and the final
one is a best guess at what’s happening at the end of the time step.

So, this method is great for first order differential equations, but how do we
apply it to second order differential equations? Now things get a bit more com-

plicated. Let’s take the case that d
2
x

dt2
= f(t, x, dx

dt
), which will allow for solving

cases with something like air resistance present. Now, we need to vreak the
second order differential equation up into two first order differential equations:

dx

dt
= v

dv

dt
= f(t, x, v)

(12)

Then, we need to solve these two equations simultaneously.
We can start with writing down the solutions for the two equations in terms

of ki values for the second derivative, and Ki values for the first derivative – i.e.
we will add up the k values to integrate out v, and the K values to integrate
out x.

This gives is:

vi+1 = vi +
1

6
(k1 + 2k2 + 2k3 + k4)∆t

xi+1 = xi +
1

6
(K1 + 2K2 + 2K3 +K4)∆t,

(13)

and now we need a prescription for evaluating the values of the k’s and the K’s.
This is again similar to in the first order equation case:

k1 = f(ti, xi, vi)

k2 = f(ti +
1

2
∆t, xi +

∆t

2
K1, vi +

∆t

2
k1)

k3 = f(ti +
1

2
∆t, xi +

∆t

2
K2, vi +

∆t

2
k2)

k4 = f(ti +∆t, xi +∆tK3, vi +∆tk3),

(14)

5

while evaluating the values of Ki is simpler:

K1 = vi

K2 = vi +
∆t

2
k1

K3 = vi +
∆t

2
k2

K4 = vi +∆tk3

(15)

This gives us a recipe that is a bit harder to turn into computer code than
the Euler method, but harder only in the sense of being more work, rather than
genuinely conceptually harder. At the same time, it’s much more accurate that
the Euler method, which is why it’s worth the effort.

Other methods

Just as Simpson’s rule often provides the best compromise among accuracy,
time to program, and number of CPU cycles needed for integrals, the RK4
method often provides the best compromise for differential equations. At the
same time, there will often be better approaches both for integrals and differ-
ential equations.

In this course, we won’t go to the lengths of actually executing these “better”
approaches, but since you may eventually find yourself in a situation where RK4
isn’t good enough, I figured that I should at least give some buzzwords you can
look up to find more sophisticated approaches. The first thing people often try
is RK4 with adaptive step sizes – that is, instead of making Deltat a constant,
let Deltat increase when the higher order derivatives of the function are small.
This is an approach that is useful for dealing with cases where the RK4 method
is “good enough” in the sense that it will converge to the right answer given
enough computer power, but where you want to get a precise answer more
quickly than you can get it with fixed step sizes. There are a range of more
and less clever ways to compute optimal step sizes. A few commonly used more
advanced approaches are the Gauss-Legendre method, and the Bulirsch-Stoler
algorithm. If you run into a problem where you need a more advanced method,
you may find it helpful to know the terminology, but we will not discuss these
methods in class.

6

Monte Carlo integration
In some cases, you will want to do integrations of very complicated functions

in a large number of dimension (including “dimensions” that are not space nor
time dimensions, but things like quantum states, or velocities, or any number of
other quantities). If the number of these dimensions is at least 8, then you may
be better off using a technique called Monte Carlo integration in order to get
an accurate answer than using the standard approaches like the Runge-Kutta
method or trapezoids.

Monte Carlo integration is the process of simply drawing a series of random
numbers and determining whether they are within a region enclosed by your

function. Let’s suppose we want to evaluate
∫
1

0
xdx. We know, of course that

the answer is 1

2
, but suppose we didn’t know this, or anything about geometry

except for the formulae for the area of a square. We could draw a 1× 1 square,
and we would know its area is 1. Then, we could figure out what fraction of
the square is below the function, and that would then give the integral of the
function.

Without using any results from geometry or calculus, how could we go about
figuring out what the fraction of the area under the curve is? It turns out that
we can just draw two random numbers, one for the x value and one for the y

value. Then, we can plot the point (x, y), and determine whether it is under the
function or not. If we do this enough times, then we will eventually build up an
estimate of the integral that will become better and better with more draws.

It turns out that this Monte Carlo integration technique converges extremely
slowly – it scales as

√
N , where N is the number of random numbers used. We

have to calculate the function once per random number, of course. Simpson’s
rule has an error that scales as N−4. So, why would we ever use Monte Carlo
integration?

There are a few reasons. One is that for very badly behaved functions, we
have to be very careful with the step sizes with Simpson’s rule – i.e. if the fourth
derivative is often extremely large, then it can be hard to ever get convergence
with Simpson’s rule. The more common reason is if the number of dimensions is
large. If we are integrating to find the volume of an object instead of an area, we
must use N steps in two different dimensions, or N ×N steps. We can see that
if we need to integrate over a large number of different variables, we eventually
run into a point where the accuracy of the Monte Carlo simulation in a given
number of steps will start to be better than the accuracy of the Runge-Kutta
integration or the integration by some other standard method.

Random numbers on a computer

There are no ways to generate truly random numbers purely mathemati-
cally.1 What most computers’ random number generators do is to start with a

1There are ways to generate random numbers by measuring quantum mechanical processes

to high precision, since the quantum mechanical processes do have a truly random compo-

nent to them. You can buy a hardware random number generator that implements one of

these solutions, but they’re expensive, and usually, if you’re careful, for most purposes in

physics, the pseudorandom numbers that come from a computer program are good enough.

For cryptography, it may be another story.

1

number called a “seed” and then apply some mathematical operations to that
number to get the next number in a sequence.2 The operations are set up in a
way that the sequence should not repeat until one gets all the way through all
the possible numbers. Beyond that, there shouldn’t be any correlations between
adjacent values, nor any preference for going up or down in any particular num-
ber of steps. Different algorithms do better or worse jobs of this, and in some
cases, you will need to check carefully to make sure that the random numbers
you are drawing are “random” enough for your purposes. This is another one of
these things that we don’t need to concern ourselves with for this course, but of
which you should be aware in case you do a research level project in the future
involving the use of computer-generated random numbers.

We can do the following: #include <time.h>

#include <math.h>

At the top of the program. These are the libraries that include the time
function and the random number function. Then, we will also include the
following routine, r2:
double r2()

{
return (double)rand() / (double)RAND MAX ;

/* Returns a random number from 0 to 1, since rand gives a number up

to RAND MAX*/

}

What this does is it allows us to take the output from the function rand

which is the standard random number generator, and convert it into a random
number between 0 and 1. If we wanted something between −1 and +1, we
could then make a multiplication and a subtraction. What we don’t usually
want is the actual output of that function which is an integer (expressed in
double precision floating point form) from 1 to RAND MAX, because RAND MAX

varies from computer to computer and anyway, it’s not as useful as a number
from 0 to 1.

We also need to initialize the random number seed. We only need to do
this once, near the start of the program. There are two approaches to doing
this. One is to choose a number yourself and use it. The other is to read a
number off the computer’s clock. To read a number off the clock, we can do:
srand(time(NULL));

which will read the clock value and send it to the random number generator as
its seed.

There are some specific reasons why you might wish to specify the number
yourself: you may be worried that you are getting results that are not specific to
how you change the physics of what you are doing in the simulation, but rather
due to where you start in the random number generator. You can get some feel

2Sometimes, the seed will declared explicitly, and sometimes the seed is taken e.g. from

the clock on the computer.

2

for whether that’s true by running through different physics situations with the
same set of random numbers. The input to srand should be an integer.

Note that you can also enter srand(1);
to return to the first random number in the sequence that you chose, so you could
just run both sets of physics in the same program. This isn’t always convenient,
since often it is only after the fact that you realize that you want to try something
like this. You could also print out the random numbers to a file, but remember
that writing to disk is one of the slowest things that a computer can do – and
in some cases, with millions of random numbers with tens of digits each, you
will use a lot of disk space. Forcing the random number seed to a particular
value really will be the most effective way to test something like this – this
actually means that for some specific purposes, using a pseudorandom number
generator is better than a true random number generator from a hardware
device, in addition to being much cheaper.

3

Modelling data
Much of the course so far has emphasized how we might go about making

simulations of things – i.e. things that are useful for a theoretical physicist who
wishes to figure out what might be the expected outcome of some theoretical
model. Some of you who plan to do experimental physics or observational
astronomy may have been left wondering why computers are really useful for
you.

The main point of our lesson this week will be to discuss how to test the-
oretical models against real data, and how to make estimates of the values of
parameters based on theoretical models, when the actual key parameter cannot
be measured directly – these are key goals for any experimentalist. First, I’m
going to give a bit of a discussion of philosophy about how to work with data.
Then, I’m going to give you a recipe for one of the most popular and useful
ways to fit models to data, but only after telling you all the reasons not to trust
it blindly. At the end of this week’s notes, I’ll also discuss briefly a few other
places where computers are used in experimental physics, but in ways that don’t
really fit in with this course.

Einstein is quite famous for having said, “No amount of experimentation
can ever prove me right; a single experiment can prove me wrong.” In the
experimental sciences, we can never prove a theory is correct. What we can
do, however, is to show that it describes nature very well over a broad range
of circumstances – once we do that, it rises from the level of a hypothesis or
a model to the level of a theory or a law. We can also prove that one theory
provides a better description of nature than another theory does.

Sometimes it can be generations between when an idea is established as a
theory which explains a wide variety of phenomena very well until the theory
can be established not to describe some experimental data. In these cases, the
old theory is often retained as useful and is often still used in cases where it
was already established to provide a good description of what Nature does. An
example, to which we will come back a bit later, is that of Newtonian gravity
versus general relativity as the “correct” theory of gravity. Newton’s theory
provides calculations which are more precise than any deviation we could hope to
measure for a wide range of conditions, and it involves doing calculations simple
enough for high school students. Einstein’s theory involves using mathematics
that very few people learn even in an undergraduate physics degree, and in most
cases, results in corrections that don’t matter. For certain purposes, almost
exclusively in astrophysics, we use general relativity as our theory of gravity.
Otherwise, we use Newton’s theory.

A general philosophy of how to analyze data
We should never think in science about whether hypotheses are right or

wrong. Instead we should think about whether the hypotheses provide a good
description of what happens in experiments or a poor description. Hypotheses
which provide poor descriptions of nature can be rejected. Hypotheses which
provide good descriptions of nature can be retained. This doesn’t make them
“right” in the sense that something that can be proved mathematically is right.
It makes them useful.

1

A large fraction of the realm of statistical analysis is concerned with hypoth-
esis testing – determining whether we should reject an idea. This is more of an
art form than a science – although it’s a rather unusual art form that often
involves doing calculus.

What we want to do is to find some mathematical technique that helps us
to determine whether our model is acceptable or rejected on the basis of the
data. There are three important things that we must keep in mind when we are
doing this:

1. Sometimes the data are not precise enough to allow us to find the flaws
in our model, or the deviations between the model and reality aren’t im-
portant within the range of parameter space in which we have tested the
model.

2. Sometimes the statistical technique we are applying is not quite correct,
or the data are not correct.1

3. Sometimes the model which is, in essence, correct, deviates from the data
more than a model which is totally different from the data. This can
happen if there are a lot of fudge factors in one model, and the other
model is not fully developed yet.

Let’s consider some examples for each of these cases.
Data not precise enough, or tests not made in the right regime

For quite a long time, it appeared that Newton’s theory of gravity and
Galileo’s theory of relativity were just flat out correct descriptions of Nature.
We now know that Einstein’s theory’s of general relativity, and special relativity,
are better descriptions of nature. We still use Newtonian gravity and Galilean
relativity for a lot of purposes, of course, because the differences between them
and Einstein’s theories, in “weak” gravitational fields, and at “slow” speeds are
very small, and because the calculations involved in using Einstein’s theories
are much more difficult.

Even before Einstein produced general relativity, there were a few measure-
ments that were better explained by it than by Newtonian gravity. The most
famous involves the orbit of Mercury – the precession of the periastron of its
elliptical orbit. After correcting for the effects on Mercury’s orbit from all the
other large, known bodies in the solar system, there were still some effects that
remained. We know now that general relativity can fix the problem. Before
other evidence also showed general relativity was a better theory than New-
tonian gravity, the general assumption had been that there was probably an

1The data, of course, are always correct, unless we have done something like make a copying

error in collecting the data. But often, we don’t understand the calibration of our experiment

well enough, and the data don’t mean what we think they do, and when we convert from

the “raw” data, which are things like “a number of photons we have detected with a photon

counting device” or “the time series of voltages measured by a voltmeter” to the kinds of

things we compare directly with the predictions of a physical theory, we sometimes make

mistakes.

2

unknown planet in the outer solar system or something like that that was caus-
ing these effects. Some other tests, notably the detection, during a solar eclipse,
of a star that should have been behind the Sun, really helped cement the idea
that general relativity worked, because there was no way to explain such a result
in Newtonian gravity, and general relativity explained it to high precision.

In any event, if we had had a cleaner solar system, so that there was not
a possibility that Mercury’s orbit was affected by something we didn’t know
about, or something like the binary pulsar which came later on, we could have
proved that general relativity outperformed Newtonian gravity much earlier on.
Similarly, if we had had the opportunity to make measurements in a stronger
gravitational field than that of the Sun, we also could have made measurements
earlier on, since the deviations from Newtonian gravity would have been smaller.
Instead, until the solar eclipse measurements, we didn’t have good enough data
to tell the difference between Newtonian and Einsteinian gravity for quite a
while.

“Systematic errors” or “wrong data”
Many of you may remember a few years ago there was a claim that neutrinos

were seem to be travelling faster than the speed of light. Most physicists, at the
time, assumed that there was probably something wrong with the experimental
data. This is almost always the reaction of most physicists when such an im-
portant (or in this case potentially important) discovery is made. It was later
found out that there were two pieces of equipment failure in the experiment.
The major one was simply a loose cable. As a result, the measurements did not
mean what the physicists thought they meant.

Cases where a model is basically right, but not sophisticated enough
We know realize that the Earth goes around the Sun. For a long time,

though, there was a philosophical notion that the Sun and the planets orbited
the Earth. The astronomers of the time were able to make mathematical for-
mulae that could predict the locations of all the planets to high precision by
using “epicycles” – basically making circles within circles. The small circles
were orbits within the big circles – sort of the way the moon orbits the Sun,
making smaller orbits around the Earth.

When Kepler made the first real quantitative predictions about the orbits of
the planets on the basis of a heliocentric solar system, his predictions were not as
accurate as the predictions of the geocentric model with epicycles. Those epicy-
cles were basically fixing both the global problem with the geocentric model,
and with problems related to the gravitational attractions of the planets on one
another and the moon on the Earth.

This is the diciest question for scientists to deal with. One can invoke Oc-
cam’s razor, which states that the simplest theory that explains all the data is
correct. But what happens when one theory is much much simpler and the other
explains the theory slightly better? Or when one theory is simpler, but rests on
questionable assumptions? In some cases, there are mathematical techniques
for dealing with this – Bayesian analysis, and the use of something called the
f -test. We won’t get into these, but Bayesian analysis really just forces us to
state a lot of our assumptions very clearly ahead of time, and the f test is really

3

only useful under cases where one model is exactly the same as another, except
for an added level of complication.

Usually the way we should deal with these cases, instead, is by getting some
outside information for which the two models make very different predictions.
In the case of the solar system, the key idea was put forth by Galileo (and
actually before Kepler came along) – that Venus shows phases in the same
way that the moon does. Galileo showed that there was no way to have this
happen if both Venus and the Sun were orbiting the Earth, but that it would
happen naturally in the Copernican/Keplerian view of things. The moral to
this story is that we should not become overly reliant on fitting one type of
experimental data against models, particularly when the data and the models
agree reasonably well. Instead, we should look for the kinds of tests of theories
where the competing theories differ as much as possible.2

χ
2 fitting: a workhorse for experimental sciences

Most of the time in the experimental sciences, we will be working with
data where the measurement errors are well described by a Gaussian function.
Another way of saying this is that if one were to make a particular measurement
an infinite number of times, then the probability density function that would
result would be a Gaussian with mean. If we go back to the formula from a few
weeks ago:

f(x) =
1

σ
√
2π

e−
(x− µ)2

2σ2
, (1)

we can now take a look at the meanings of the parameters for the Gaussian
probability density function.

The mean value of the function will be µ and the standard deviation of the
function will be σ. Usually, if a value is reported as x± y, y is the value of σ for
the variable x. This is not always the case – in some fields of research slightly
different numbers are used. But you can see that it doesn’t mean that the full
possible range of values of x is from x− y to x+ y. This is an important point
to take home, because this is a point that confuses students a lot of the time.

So what is σ? It is the square root of the variance of the data. The variance
is what is called the second moment of the data. The nth moment about a
particular value c is defined by:

µn = (x− c)nf(x)dx. (2)

If we set c = 0, and n = 1, we get the first moment, which is the mean. If we
set c = µ (so that we are taking the moment about the mean), and set n = 2,
then we get a quantity called the variance. The square root of the variance tells

2This is especially true when the experimental data are known about before the theoretical

work is done, which is most of the time. Then, the theoretical work is aimed at explaining the

data. This is a perfectly reasonable approach, but it is also something that we need to bear

in mind – theorists will often adjust the assumptions they make a little bit to be sure they

match the existing data. Coming up with new tests which make radically different predictions

pushes the theorists into a corner. Good theorists try to push themselves into a corner by

proposing ways that their theories could be proved false.

4

Number of sigmas Percentage of distribution
0.67 50
1 68.27
2 95.45
1.645 90
3 99.7
4 99.9936
5 99.999943

Table 1: The table gives the percentage of a Gaussian distribution enclosed
within ± the number of multiple σ away from the mean.

us something about the “typical” uncertainty in the parameter value. If f(x) is
a Gaussian, then µ will be the mean and σ2 will be its variance.

Since you already know how to integrate Gaussians, you can check this, but
there are regions called confidence intervals for Gaussians:

For large multiples of σ away from the mean, it can be more convenient to
give the probability that an event takes place outside the distribution, rather
than within it.

If we have a single variable with a normal distribution, then we can test a
measurement by looking at the difference between our data value and the pre-
dicted value based on our hypothesis in terms of the difference in units of σ.
What we try to do when we compare a model with some data is to estimate
something called the “null hypothesis probability”. This is the probability that
just random chance, based on the measurement errors, would give us as bad a
match we get when we do the experiment, even if the model were an exactly
correct description of what is happening in the experiment. A large null hypoth-
esis probability means that the hypothesis cannot be rejected by this experiment
alone. That is, the hypothesis has survived this test. This is, at some level, ev-
idence in favor of the hypothesis, but it is not proof of the theory – as we have
stated above3, no theory can ever be proved correct, but rather theories can
merely be demonstrated to provide excellent descriptions of nature over a broad
range of conditions.

Suppose we had reason to believe that the Earth’s gravitational constant
is 9.8 km/sec/sec exactly at sea level, and we were trying to test whether we
measured a different value at an elevation of 3000 m. Suppose we measured a
value of 9.705± 0.019. We then subtract the two values and get: 0.095± 0.019.
This is 5σ and we can see that 99.999943% of the measurements should be within
5σ of the expected value. Therefore, there is only a 0.000057% chance that such
a large deviation would occur due to measurement errors, provided that we have
correctly estimated our measurement errors. Under these circumstances, we
could very safely say that g has changed between our two measurement locations.
This would also provide strong support for the idea that g changes as we increase
altitude above sea level, but we would want to take more measurements at

3It bears repeating.

5

different altitudes to be more confident in drawing that conclusion.
This approach is thus great, if we just want to compare one number with

another number. That’s not what we usually want to do in physics. Usually, we
want to compare a set of measurements with a model that attempts to describe
what is happening in Nature. Most often, what we will have is data in the form
of x and y, with uncertainties on x and on y. Our procedure is greatly simplified
if (1) y is a function of x and (2) the errors on x are sufficiently small that we
can ignore them. For the purposes of this class, we will proceed as though those
conditions are met.4 We will then have three quantities associated with each
measurement we make – the values of x, y and σy.

We won’t go into a full mathematical derivation, but what we can do is to
definte a new quantity called χ2:

χ2 =
n
∑

i=0

(

f(xi)− yi
σy,i

)2

, (3)

where n is the number of data points we have, the subscript i is telling us that
we are using the ith value in the sequence, and f(x) is the function we are
testing. Essentially, we are summing the squares of the differences between the
data and the model. We can perhaps make a leap of intuition without doing all
the rigorous math here, and say that this makes sense, since σ is the mean value
of the square of the difference between the actual value of the data points and
the values you would get by sampling the distribution randomly a large number
of times.

Next, we have to figure out how to interpret that. We need to know how
many “degrees of freedom” we have for the model. A degree of freedom is
essentially a “test” of the model The number of degrees of freedom is typically
represented by ν. If we have a model which is completely constrained ahead
of time, then the number of degrees of freedom is the number of data points.
However, in most cases, our model will have parameters that we are trying
to estimate at the same time that we are trying to test whether the model is
correct. Every time we have a parameter that we allow to vary in order to
determine whether the data can be explained by the model, we use up one of
the degrees of freedom provided by the data. There are mathematically rigorous
ways to think about this, which are a bit too complicated for this course, but a
quick way to think about this is that you can always fit an n element data set
with a polynomial of order n− 1 if you can vary all n coefficients (including the
constant) – but that doesn’t mean anything, really. On the other hand, if you
can fit n + 50 data points with a polynomial of order n, that really probably
does mean that the data are well described by a polynomial.

OK – so now we know how to compute χ2 and we know how to compute the
number of degrees of freedom. As you have probably guessed, if χ2/ν equals 1,
we have a good fit. The model is a statistically acceptable description of the
data. But how do we figure out what the situation is when χ2 is not 1? When

4It is often not the case, and then more complicated procedures must be used for testing

hypothesis.

6

is a fit rejected? We can compute the probability of getting a value of χ2 at
least as large as the measured one by chance. The formula:

F (χ2, ν) =
γ
(

k
2
, χ2

2

)

Γ
(

k
2

) (4)

gives the total probability that one would obtain a value of χ2 less than or equal
to the measured value, so the probability of getting a worse answer by chance is
1−F . The function γ is something called the lower incomplete gamma function
and the function Γ is the actual gamma function. If you ever want to write a
computer program to compute the these things both of these functions are in
the GNU Scientific Library and most commerical mathematical packages.

The one last thing we need to worry about is how to get the best values of the
parameters for the model we have in mind. What you want to do is to find the
minimum value of χ2 for a given model by changing around the parameters. A
variety of algorithms do this. The Levenberg-Marquardt algorithm is probably
still the most commonly used one, but there are more computationally intensive
algorithms that can sometimes do a better job. The chief worry with any fitting
algorithm is that it may find what is called a “local” minimum of χ2 – that is a
set of parameters which does not give the actual minimum for χ2, but for which
small changes in the parameter values result in a worse fit.

Fitting functions with GNUPLOT: some recipes and some examples
Now, with the philosophy of hypothesis testing, and the theoretical founda-

tions for using χ2 fitting laid out, we can move on to how we go about actually
fitting functions to data within gnuplot.

I have generated a file, “output values linear” with fake data with errors.
The data are produced from a straight line with y = mx+ b, with m = 1, and
b = 2. I then randomly assigned 30 values of x, and 30 values of σy to the
data points. I then computed what y should be, and then changed y by taking
a random deviate from a Gaussian distribution with σ = σy. Basically, this
data set should be consistent with a straight line with slope 1 and intercept 2.
We probably will get values very close to those values, but not exactly equal to
them. Let’s give it a try.

First, here are the numbers:
Now, let’s first plot the data in gnuplot:

gnuplot> plot "./output values linear" u 1:2:3 with yerrorbars

and we see that it looks pretty much like a straight line, so it is reasonable to
try a straight line model.

Now, we need to define the model we want to use:
gnuplot> f(x) = m*x+b

gnuplot> m=1
gnuplot> b=2
gnuplot> fit f(x) ”./output values linear” u 1:2:3 via m,b

We then get some output: m = 0.997465, b = 2.03362 with 28 degrees of
freedom and χ2/ν of 0.779. We have a good fit, and we recovered what we
thought we were going to recover.

7

Now, let’s see what happens if we try to fit an exponential to the data.
gnuplot> f(x) = m*exp(-x/b)

gnuplot> fit f(x) "./output values linear" u 1:2:3 via m,b

Here, we get a value of χ2/ν of more than 75 – basically the exponential is
such a horrible fit that b runs up to a very high value, so that effectively the
exponential becomes a constant that is the mean value of y.

Finally, you should always take a look at the residuals any time you fit a
function to some data. gnuplot> plot "./output values linear" u 1:(2−
f(1)):3 with yerrorbars will give you a plot of the data minus the model.
Sometimes when you get a reasonably good fit, you will still see a trend in the
residuals that tells you that there is something interesting going on that you
might have missed otherwise. Also, when you get a bad fit, you can often isolate
what is going wrong and figure out how to make a slightly more complicated
model that will then become a good fit. I saw a nice example of this from a
carefully-done experiment made by my lab instructor when I was a freshman in
college. He had measured current versus resistance with a variable resistor and
an old fashioned ammeter that had a needle on it. He found that a straight line
was a very good fit to the data, but then there was a small additional smoothly
varying residual. This was due to the weight of the needle on the ammeter.

So, this is just a start to how to analyze data, but if you master the ideas in
this set of notes, and you can do the exercises, and you remember when you are
violating the key assumptions that go into χ2 fitting and then either take the
results with a grain of salt, or use a more sophisticated approach, you should
be able to do a lot of useful work.

Other uses of computers in experimental/observational sciences

1. Computers are often used in the data collection process in the experimen-
tal sciences. For example, computers can be used to control experiments,
or to collect readout data from an instrument (e.g. an oscilloscope or a
voltmeter or a charge coupled device). This type of work often involves
specialized techniques for programming, since it gets in to the details of
the hardware, and often involves specialized software for using, since the
user just wants the answer, and doesn’t want to have to understand the
details of the computer hardware, unless the computer hardware can lead
to distortions of the measurements. It is thus a very important area, but
not really appropriate for a first course on programming.

2. Computers are often used to do simple processing of large data sets. We
discussed the case of the Fourier transform already, which is often used
for processing time series data (and sometimes, two dimensional Fourier
transforms are used to process images). A variety of other types of time
series and image processing are done in physics, astronomy, geology, en-
gineering, and increasingly in certain areas of biology and chemistry. The
data from the Large Hadron Collider, and other particle accelerators, are
compared with computer simulations of what different kinds of particle
interactions should look like, and this is how it is inferred what types of
particle interactions took place in the collider.

8

3. Computers, and the internet can be used to distribute data to colleagues,
and to the general public. This is rather straightforward in the case of
simply sending data to your colleagues. One of the more interesting ap-
plications in the past couple of decades has been that of “citizen science”
projects.

These projects have taken a couple of forms. One is the “volunteer com-
puting” approach. Certain types of tasks require a large number of com-
putations, which can be split up easily. At the same time, large numbers
of computer owners use their computers only a small fraction of the time.
Some enterprising scientists have created software which people can down-
load that allows their computers to do work on projects for the outside
scientists. A few physics-related projects which have taken advantage of
this include LHC@home, which does simulations needed for making the
most of the Large Hadron Collider, Einstein@home which searches radio
telescope data for evidence of gravitational radiation, and SETI@home,
which involves searching through data from radio telescopes for signals
of extraterrestrial intelligence. Interestingly, there are also many biology
projects using volunteer computing, but they are almost all for theoretical
calculations of protein structures, rather than for analysis of experimental
data. If you are interested in contributing computer CPU cycles, check
out boinc.berkeley.edu.

The other way that citizen science can work is when there are types of
data that need to have a large number of humans look at them. There
are still types of pattern recognition that humans do much better than
machines. Many of these are on the borderline between psychology and
artifical intelligence – e.g. the Royal Society’s Laughter project in which
you listen to some laughs and try to determine if they are real or fake.
Others involve physics, like the Galaxy Zoo project in which you look at
images of galaxies from large sky surveys and tell which type of galaxy it
is, which direction it’s rotating, and also flag up if anything looks unusual.
Large numbers of non-experts can be trusted to get the right answers, as
a group, an awful lot of the time, and a small fraction of the data can be
examined by experts in order to determine how often things go wrong by
trusting non-experts. This is a type of project that requires the internet.
If people needed to make printouts and pay postage in order to send the
data back and forth, the cost of such projects would be prohibitive. The
Galaxy Zoo project has resulted in a few discoveries of things that were
made only because a human looked at the images, but which didn’t require
real experts to be the first ones to notice something unusual. I am not
enough of an expert on the marine biology experiments using the same
techniques to identify types of fish in videos from underwater experiments,
but I would guess that they are just as effective.

9

