
Pointers and arrays
There are two ways of working with data in C that go beyond what you

would normally think of as a single variable. These are pointers and arrays.
They are two very different concepts, but we will treat them together.

When a C/C++ program passes a variable to a function, it passes the value
of the variable, but not the memory location. What this means is that you
cannot change the value of the variable within a function.1

The way that you can work around this is to use pointers to the location in
memory. Then inside the function, you can tell the computer to look up the
value stored at that memory location, rather than the memory location itself.
This manner of dealing with variables stems from the fact that C was originally
developed with the goal of writing operating systems, rather than the goal of
doing numerical calculations – for running an operating system, it is useful to
be able to work with specific memory locations. It takes a bit of getting used
to, but after you get used to it, it’s not so bad.

A pointer to a variable’s memory location is specified by putting an amper-
sand (i.e. the & symbol )in front of it. The value of the variable stored in a
memory location is specific by putting an asterisk in front of the pointer.

Some basic rules on how to deal with pointers:

1. When you’re in the main program, and you want to send a variable to
a function, but don’t want to change it, use the variable name. This is
the simplest case – everything is intuitive. When you get back from the
function, the variable will have the same value it had before you passed
it, even if you do something to the variable within the function.

2. When you’re in the main program, and you want to send a variable to a
function and do want the function to be able to change the value, send a
pointer – the variable name with the ampersand in front of it.

3. When you’re then in the function and you wish to work with the variable
to which you have a pointer, you need to remember that it is a pointer
that you have in that function and not the variable itself. If you want
to change the value of the variable, rather than the value of the memory
location, you must then put an asterisk in front of the variable name.

Here is an example, the program read numbers.cc. One of the lines is just
in there to print out both the pointer and the data value, and to show you that
the pointer is generally a very large integer which is meaningless unless you have
a lot of expertise in dealing with the innards of operating systems.

/* Simple program to read in number */

/* Really just demonstrates pointers*/

#include<iostream>

using namespace std;

1You can declare global variables, which can be used in all subroutines without being

passed, and do things like that, but it is considered by many people to be bad programming

practice – it definitely increases the risk that you will make certain types of mistakes.

1



#define pi 3.141592653505

void read start vals(float *x, float*y,float *v, float *theta)

{
/* We use pointers here, because we are changing the variable’s value

and sending that back to the other routine */

/* If we do not use pointers here, we will only change the values of

x,y,v,theta within the subroutine here */

cout <<"What is the initial value of x in m?\n";
cin >> *x;

cout <<"What is the initial value of y in m?\n";
cin >> *y;

cout <<"What is the initial value of theta in degrees?\n";
cin >> *theta;

theta=*theta*pi/180.0;

/*This is to convert theta into radians, since C/C++ does trig in rads

*/

cout <<"What is the initial value of v in m/s?\n";
cin >> *v;

cout << "For x, the memory value is" << x << "and the actual value

is " <<*x <<endl;

return;

}

main()

{
int i,imax;

float x,y,v,theta,vx,vy,t,fx,fy;

read start vals(&x,&y,&v,&theta);

cout << x <<" "<< y<<" " << v <<" "<< theta << endl;

}

Arrays

The other type of data that we have to learn to deal with is data stored in
arrays. An array is basically the computer equivalent of a vector or a matrix
(or tensors when you eventually get to them). It’s a set of numbers sorted in a
particular way and stored in a single variable.

There are a few things to remember. First, in C, the vectors start from
element number 0, rather than from element number 1. In many other pro-
gramming languages vectors start from element 1. This will be an important
thing to check on when/if you start to program in other languages. Second, the
way that we pass arrays to functions is as the whole array, without using sym-
bols indicating they’re pointers. When we have the whole array, the compiler
assumes that it is a pointer to the first element of the array, and then you can
work with the variables as though you had passed a pointer. However, when

2



you send a single element of an array to a function, you need to use a pointer
symbol. Take a look at this program, which reads in two arrays of user-defined
size, and then takes their dot product:

3



/*This is a simple program to read two vectors and compute their dot

products */

#include<iostream>

using namespace std;

#define MAX DIM 10

void readinvalues(double vector1[], double vector2[],int *dimensions)

{ /*At the top, we just use vector1[] because C knows we want to use

*/

/*a pointer to the whole array */

int i;

do

{
cout << "How many dimensions do the vectors have?" << endl;

cin >> *dimensions;

/* We used a pointer to dimensions because we want to be able to send

back to the main loop how many dimensions our vector has */

}
while (*dimensions>MAX DIM);

for (i=0;i<*dimensions; i=i+1)

{
cout <<"Enter vector 1, element" << i << endl;

cin >> vector1[i];

}
for (i=0;i<*dimensions; i=i+1)

{
cout <<"Enter vector 2, element" << i << endl;

cin >> vector2[i];

}

return;

}

double dotproduct(double vector1[],double vector2[],int dimensions)

{
int i;

double dp;

dp=0.0;

for (i=0;i<dimensions;i=i+1)

{
dp=dp+vector1[i]*vector2[i];

/*Here, we leave vector1[i] alone, rather than putting an */

/*asterisk before it, because we are not passing it to */

/*another function. */

4



cout << "i,vector1,vector2=" << " "<< i << " " << vector1[i] << " "

<< vector2[i] << endl;

}
return(dp);

}
main()

{
int dimensions;

int i;

double vector1[MAX DIM];

double vector2[MAX DIM];

double dp;

readinvalues(vector1,vector2,&dimensions);

/* Dimensions needs an & but vector1 and vector2 don’t because the

full arrays are being passed.*/ dp=dotproduct(vector1,vector2,dimensions);

cout << "The dot product is: " << dp <<endl;

}

}
You can also specify multi-dimensional arrays – for example to do matrix cal-
culations. It can also be a convenient way to keep the position and velocity for
an object – that could be a 2 × 3 array, with:
x[0,0] = x

x[0,1] = y

x[0,2] = z

x[1,0] = vx

x[1,1] = vy

x[1,2] = vz

Choices like this are often a matter of taste, rather than a matter of what is
the best way to do a programming problem. The choice to put both the position
and velocity into the same variable is likely to make it a little bit easier to get
the code written without making a mistake, but a little bit harder for someone
knew coming to the problem to change the code if you do not comment it well.

5


