
Numerical integration for solving differential
equations

After integration, it is natural to consider how to find numerical solutions to
differential equations on the computer. Simple equations of motion lead to 2nd
order differential equations. In the case of constant acceleration, we see that:

v = at + vo, (1)

so,

x =
1

2
at2 + v0t + x0. (2)

However, if the force and hence acceleration is related to the position or the
velocity in any way, then we cannot just to simple integration in closed form
(or at least not simple integration of the form that one typically learns in a first
calculus class). 1

There are still plenty of such problems that can be solved in closed form.
Let’s consider two problems that come up a lot in a first classical mechanics
course – the ideal spring which follows Hooke’s Law, and the simple pendulum.
In an introductory classical mechanics course, we will usually use the small
angle approximation, and say that sinθ = θ, which then reduces the math for
a pendulum’s angular motion to being basically the same as the math for a
spring’s linear motions. It’s a pretty good approximation, but it’s not quite
right, and the differences are something that you could measure in a lab fairly
easily.

So, the equations of motion of a pendulum are:

α =
−g

l
sinθ =

dω

dt
, (3)

and
dθ

dt
= ω. (4)

For if we make the small angle approximation that sin θ = θ, then we get:

d2θ

dt
=

−g

l
θ, (5)

which we can solve by inspection to give a sine wave with frequency
√

g/l.
If we don’t make the small angle approximation, there is no closed form

solution to the differential equation.

1Historically, these problems were solved by perturbation analyses – one would solve a
problem that was almost the problem that one wanted to solve, and then figure out how to
make small changes to the solution based on the small deviations from the soluble problem.
This kind of approach is still often useful for two purposes – (1) it can sometimes guide an
efficient approach to finding the numerical solution to the problem and (2) it can sometimes
produce simple formula which are approximately correct, and which can guide understanding
of what really happening in a way that the outputs of a thousand computer simulations often
cannot.

1

There are a few approaches to solving differential equations on a computer.
The simplest, by far, is Euler’s method, which is basically like the rectangular
rule that we talked about for solving simple integrals last week. Instead of
trying to solve a second order differential equation, what we do is we split it
into two first order differential equations, and then solve each of them. We look
at the force law to solve the equation to get the velocity, and then we look at
the velocity to get the equation for the position.2

Let’s lay this out in abstract terms. We have two variables, x and t. We
want to solve for x as a function of t. Let’s let the second derivative of x be a
function of x itself, and maybe also of the first derivative of x. We define a new
variable v to be dx

dt
.

We just set:

xi+1 = xi +
dx

dt
× ∆t (6)

vi+1 = vi +
dv

dt
× ∆t (7)

dv

dt
= f(x, v) (8)

We can now solve this on the computer, as long as we can write down the
expression for f(x, v). As an example of how to do this, I have written a program
to solve the pendulum problem with Euler’s method.

/* Pendulum program */

#include<math.h>

#define g 9.8 /* sets g for use throughout the program*/

#define deltat 0.001 /*sets a timestep value for use throughout the

program*/

#include <iostream>

#include <fstream>

using namespace std;

float euler(float x,float xdot)

{
/*This function just increments a variable by its derivative times

*/

/*the time step. This is Euler’s method, which is a lot.*/

/*like the rectangular rule for evaluating a simple integral. */

x=x+xdot*deltat;

return(x);

}

void read start vals(float *theta, float *length)

{
cout << "What is the initial value of theta in degrees?\n";

2For the pendulum, really, we’re looking at torques, angles, and angular velocities, of
course, but the math is applicable to a wide range of problems.

2

cin >> *theta; /*theta is a pointer */

/*The next line converts theta into radians */

*theta=*theta*M PI/180.0; /*M PI is pi defined in math.h */

/* An asterisk is needed for theta because we want the value*/

/* at the memory address of the pointer, not the address itself*/

cout << "What is the length of the pendulum in m?\n";
cin >> *length; /* *length is a pointer */

return;

}

float angular acceleration(float theta,float length)

{
float alpha,omega;

alpha=-(g/length)*sin(theta);

/* This is just first year physics, but before we make the small

angle approximation. */

return alpha;

}

main()

{
int i,imax;

float alpha,theta,omega,length,t,kineticenergy,potentialenergy,totalenergy,velocity;

ofstream outfile;

/*Above lines define the variables*/

/*Mass is ignored here, since it falls out of all equations*/

/*To get energy in joules, etc. would have to add a few lines of code*/

outfile.open("./pendulumoffset"); /* opens a file for writing the output*/

t=0;

omega=0;

/*The two lines above make sure we start at zero.*/

read start vals(&theta,&length); /*Reads initial offset and length of

pendulum */

for (i=0;i<50000; i=i+1) /*Starts a loop that will go through 50000

time steps */

{
alpha=angular acceleration(theta,length);/*Computes angular accel.

*/

omega=euler(omega,alpha);/*Changes the angular velocity by Euler meth.

*/

theta=euler(theta,omega);/*Changes angle by Euler meth.*/

potentialenergy=g*length*(1.0-cos(theta));/*Computes grav. pot en.*/

velocity=omega*length;/* Computes linear velocity*/

kineticenergy=0.5*velocity*velocity;/*Computes kin. en */

totalenergy=potentialenergy+kineticenergy;/*Computes total energy*/

t=t+deltat;/*Increments the time*/

3

outfile << t <<" " << theta <<" " << omega <<" " << kineticenergy <<"

" << potentialenergy <<" " << totalenergy << endl;/* Prints out the

key variables*/ /*Note: keeping track of the total energy is a good

way to test a*/

/*code like this where the energy should be conserved*/

}

fclose(fp);/*Closes the file*/

}

The big disadvantage of the Euler method is that it tends to give answers
which get worse and worse with time. This is actually true for all numerical
integration schemes for solving differential equations for nearly any problem.
Problems like this one, for which the solutions are periodic are less troublesome
than problems for which the solution could go off in any directions. First – in
this case, it’s obvious that the solution will be periodic, even if the solution is
not a sine wave, so we have a sanity check 3

The next level up in complication is a method to do something sort of like
what we did with Simpson’s rule, and to try to do something to take into
account the curvature of the function for which we are solving. There is a
family of methods called Runge-Kutta methods which can be used for solving
differential equations more precisely than the Euler method can in the same
amount of computer time. In this class, we will use the “classical Runge-Kutta”
method, which provides a good compromise among simplicitly, accuracy, and
computational time needed. It is also sometimes called the RK4 method, since
it is a 4th order method in the seconds that the errors per step scale with the
step size to the 5th power, so the total errors scale with the step size to the 4th
power.

Let’s first lay out the method for the simplest case, where we are solving a
first order differential equation:

dx

dt
= f(t, x), (9)

along with which we will need a boundary condition, that at t0 x = x0.
Now, we integrate this out with something analogous to Simpson’s rule:

xi+1 = xi +
1

6
∆t(k1 + 2k2 + 2k3 + k4), (10)

3You may have also noticed that I computed and printed out the energy in this system to
make sure that it was conserved which is another sanity check.

4

where the kn values are given by taking:

k1 = f(ti, xi)

k2 = f(ti +
1

2
∆t, xi +

∆t

2
k1)

k3 = f(ti +
1

2
∆t, xi +

∆t

2
k2)

k4 = f(ti + ∆t, xi + ∆tk3)

(11)

What is going on in this set of equations is that a series of estimates of
the derivative of x with respect to t are being made. The first is the Euler
method’s approximation. The second makes an estimate of the value of x half
way through the time step, based on using the value from k1, and just adds half
a time step to the time. The third makes another estimate based on adding half
a time step, but now using the value of the position based on k2, and the final
one is a best guess at what’s happening at the end of the time step.

So, this method is great for first order differential equations, but how do we
apply it to second order differential equations? Now things get a bit more com-

plicated. Let’s take the case that d
2
x

dt2
= f(t, x, dx

dt
), which will allow for solving

cases with something like air resistance present. Now, we need to vreak the
second order differential equation up into two first order differential equations:

dx

dt
= v

dv

dt
= f(t, x, v)

(12)

Then, we need to solve these two equations simultaneously.
We can start with writing down the solutions for the two equations in terms

of ki values for the second derivative, and Ki values for the first derivative – i.e.
we will add up the k values to integrate out v, and the K values to integrate
out x.

This gives is:

vi+1 = vi +
1

6
(k1 + 2k2 + 2k3 + k4)∆t

xi+1 = xi +
1

6
(K1 + 2K2 + 2K3 + K4)∆t,

(13)

and now we need a prescription for evaluating the values of the k’s and the K’s.
This is again similar to in the first order equation case:

k1 = f(ti, xi, vi)

k2 = f(ti +
1

2
∆t, xi +

∆t

2
K1, vi +

∆t

2
k1)

k3 = f(ti +
1

2
∆t, xi +

∆t

2
K2, vi +

∆t

2
k2)

k4 = f(ti + ∆t, xi + ∆tK3, vi + ∆tk3),

(14)

5

while evaluating the values of Ki is simpler:

K1 = vi

K2 = vi +
∆t

2
k1

K3 = vi +
∆t

2
k2

K4 = vi + ∆tk3

(15)

This gives us a recipe that is a bit harder to turn into computer code than
the Euler method, but harder only in the sense of being more work, rather than
genuinely conceptually harder. At the same time, it’s much more accurate that
the Euler method, which is why it’s worth the effort.

Other methods

Just as Simpson’s rule often provides the best compromise among accuracy,
time to program, and number of CPU cycles needed for integrals, the RK4
method often provides the best compromise for differential equations. At the
same time, there will often be better approaches both for integrals and differ-
ential equations.

In this course, we won’t go to the lengths of actually executing these “better”
approaches, but since you may eventually find yourself in a situation where RK4
isn’t good enough, I figured that I should at least give some buzzwords you can
look up to find more sophisticated approaches. The first thing people often try
is RK4 with adaptive step sizes – that is, instead of making ∆t a constant, let ∆t
increase when the higher order derivatives of the function are small. This is an
approach that is useful for dealing with cases where the RK4 method is “good
enough” in the sense that it will converge to the right answer given enough
computer power, but where you want to get a precise answer more quickly than
you can get it with fixed step sizes. There are a range of more and less clever
ways to compute optimal step sizes. A few commonly used more advanced
approaches are the Gauss-Legendre method, and the Bulirsch-Stoler algorithm.
If you run into a problem where you need a more advanced method, you may
find it helpful to know the terminology, but we will not discuss these methods
in class.

6

