How to approach a computational problem

A lot of people find computer programming difficult, especially when they
first get started with it. Sometimes the problems are problems specifically re-
lated to writing programs — difficulties in dealing with the exact syntax the
computer demands from the programmer. A lot of the time, though, this is not
the case, and the problem is more basic. One major source of difficulty that
beginning programmers will often have is that they try to write the computer
program before they have properly thought about what they are trying to do.
This sort of impatience is human nature, especially if you’re learning to program
in a computer lab, while sitting in front of the computer terminal. It’s also very
bad practice and can lead to a lot of frustration.

As you first get started with programming, you should follow a few steps
before you start typing on the computer. As you become more experienced, you
may decide to take a more relaxed approach, and for simple tasks, that more
relaxed approach may lead to your getting the job done faster. For complicated
tasks, though, you should always follow certain elements of “good practice”.

Subroutines and pseudocode

We often refer to a finished computer program as a piece of “code.” The
essence of a computer program is that it is a means of encoding an algorithm
— a step-by-step procedure for performing some function, usually a calculation
— into a language that a computer can “understand.”! Very often, what will
happen for beginning (and even experience) programmmers is that the computer
code is a correct implementation of an incorrect algorithm.

We need to remember that, without programming, computers can do only
a small handful of things — some basic input and output tasks, some shifting
around of data from one location in the computer’s memory to another, and
some basic arithmetic. Once we remember that the computer can do only these
things, but can do them perfectly,? we understand the level of detail in which
we need to develop our algorithms in order to get them to work out.

What you need to do, then is to take the larger task you wish to accomplish,
and break it down into a set of smaller tasks. Eventually you will wish to get
to tasks so small that the computer can understand them. You will have the
most success in achieving your goals if you do this before you sit down at the
computer and start typing in a program.

There are a few key “buzzwords” for this sort of algorithm development —
structured code, subroutines, and pseudocode.

First, let’s discuss “structured code”. The nature of a structured code is that
it is built up from a main body with a set of subprograms, called subroutines.
The main body exists almost exclusively for calling the subroutines to be run
— and sometimes for determining whether enough of the subroutines have been
run. For very simple programs, one can get away with doing a bit more in the

LAs we will discuss later, we actually need to take our codes written in a “high level”
programming language and convert them into machine language before the computer can
really “understand” them.

2We will discuss round-off errors in computer arithmetic later in the course — computers
actually don’t do certain types of math perfectly



main body, but as programs get more complicated, the main body really needs
to be kept as simple as possible, with the complexity moved to the subroutines.

The modularity of structured codes leads to several key advantages. During
the programming process, it becomes possible to split tasks up among sev-
eral programmers, if a code is especially complicated. Additionally, certain
subroutines are useful for a variety of purposes, and one can often find these
subroutines already written (e.g. the book Numerical Recipes contains a lot of
computer codes that can be applied to various tasks, mostly relevant to scien-
tific computing). There is also a package called the GNU Scientific Library that
contains libraries of routines written for use with C/C++ programs.

Consider the program compute_sines.cc. You can look at this code and
see immediately that it first calls a subroutine readinvalues and then calls
a subroutine printoutsines. You do not need to be an expert in computer
programming to figure out what the basics of this program are, especially since
I have put comments in the subroutines. You can also see that if we wanted
to allow the user to decide whether to take a sine or a cosine wave, we could
have put in another subroutine, almost like the printoutsines routine, but
with a cosine function in it and called it printoutcosines®. We then could
have included sine or cosine as an option in the routine readinvalues, and a
“control structure” in the main body to use the user’s choice to decide which
of the subroutines. The main body of the code would get only slightly longer,
even as the code got much longer.

The other main advantage is that two programmers could work simultane-
ously on this program — one could write the input subroutine and one could
write the output subroutine, and then the full program could be put together
later on, and a third programmer could be added to write the cosine routine,
if that were deemed valuable. This program, and indeed, most of what you
are likely to do as an undergraduate, is simple enough that the amount of time
spent discussing exactly how to separate the work and how to make sure that
the pieces fit together at the end might not be justified by the additional in
person-power to the task?* — but you can at least see how a nice structured
program makes this much easier to do.

Pseudocode

So: how do we get to the point of writing a nice structured program, and
coding it in correctly? This, plus some basic understanding of some numerical
methods, is the whole point of our course. A lot of it will just take practice.
People who spend hours and hours writing computer programs tend to become
good at it. So, think about this once in a while when you are doing your
homework for other classes, or are working on lab reports, or anything else that
requires some mathematical analysis — and maybe perform a computational

3We could call it Fred too, if we wanted to, but we generally like to give subroutines names
that help describe what they do. But the program would still work with Fred

4There is an influential book in software engineering called The Mythical Man-Month
which suggests that sofware projects should generally be done with the fewest people possible
because having too many people working on the project means that too much time is spent
communicating about the project and not enough time is spent doing it.



solution to something, or use a computer program to model your data.

Let’s also remember the words of NFL Hall of Famer Vince Lombardi, who
said, “Practice does not make perfect. Only perfect practice makes perfect.”
There are some ways to approach writing a computer program that will allow
you to do a better job, right from the start.

The most important of these is writing a “pseudocode” before you start
programming. A pseudocode is a description of what your program will do that
is written out in plain English (with some mathematical notation where that’s
easier to understand than plain English). A good pseudocoding approach will
start from a top-down approach — give a list of fairly vague tasks that are “black
boxes”. Each of those black boxes is then specified further later on. The top
page then becomes the main body of the program, and each of the black boxes
becomes a subroutine. Some of the subroutines may need further subroutines,
of course.

In class, we will discuss the example of writing a pseudocode to make a
peanut butter and jelly sandwich.

Debugging

Writing computer programs is not easy for most people at first, but it’s
something that people generally become better at as they get more experience.
A lot of what you have to do is “trial and error” type work, but there are some
strategies that can make it go more quickly and less painfully.

There are two results of making a mistake in writing your program. The
first result is that the program fails to be compiled. This is usually the easy
kind of problem to fix, because the compiler usually gives you some advice in
the form of an error message, telling you what went wrong and in which line
of the program it went wrong. Often, in C, the problem will be as simple as a
missing semi-colon. Occasionally, the real problem will be elsewhere in the code
and will show up when it causes a fatal error somewhere else.

The other problem which can arise, which is harder to fix, is when your
program compiles and runs, but gives the wrong answer. In this case, there are
three main classes of mistakes:

1. Mistakes in designing the algorithm — that is, your plan for how the com-
puter should follow simple steps and get the answer you're looking for is
incorrect.

2. Mistakes in coding the algorithm into the computer — that is, the idea
you have about how to break the problem up into simple steps is correct,
but you have made some error in terms of translating that idea from
pseudocode into actual computer code.

3. Typographical errors — these can include typographical errors in writing
the computer code, and also sometimes errors in the input data set you
send the computer.

When in doubt, print it out!
When you are trying to figure out where you have made a mistake in your
program, you should print out the results of the program to the screen, or to



a file that you can look at, or even send to a printer to get a paper copy. Not
only that, you should print out a lot of things that you wouldn’t normally need
to see — e.g. the intermediate results of calculations; lines that say you entered
a loop, and that you exited a loop; etc. Print out as much stuff as possible, and
then follow the problem through a simple example that you can calculate by
hand. Find where what you’re doing by hand differs from what the computer is
giving you. If at all possible, print out so much stuff that you locate the mistake
to within a few lines of computer code.



Getting started
We will now write the first C program that most people write, “Hello World”,

called helloworld.cc in the course web page.
/* Hello World program */

#include<iostream>
using namespace std;
main()

{

cout << "Hello World\n";

}

There are several key syntax things to notice about this program. First, I
have set apart the first line as a comment that tells me something about what
the program does. Second, I have included the standard input-output library.
Third, I have a section starting with main() — this is the main body of the
program. Fourth, I have printed something out within the main body of the
program. Note that there is a \n in the cout statement. That signifies to go to
a new lines afterwards.

Next, let’s try to move to a structured programming approach. Let’s make
that printout go inside a function.

/* Hello World program -- with a function */

#include<iostream>
using namespace std;

void helloworld()

{

cout << "Hello World\n";
return;

}

main()

{

helloworld();

}

Now we have void helloworld() before the main body of the program.
This is a function. The function is of “type” void.

An aside: data types
Functions and variables have “types” in C. The basic types are char, int,
float, and double, for characters (i.e. things which may not be numbers), in-



tegers, floating point numbers (i.e. real numbers), and double precision floating
point numbers.® It is fine to use a float to store an integer, but if only integer
operations will be done, that will waste memory and CPU time.

Back to functions

A void function is a function that doesn’t return a value. Other functions
sometimes will return values and store them in variables in the main program.
Functions can also have variables that are passed to the function. There aren’t
any of those for the helloworld function, either, but if there were some, they
would go in the parentheses.

Next, we see that the main body of the program calls helloworld. Then
the program ends.

Reading in input from the user

OK - now let’s say we want to print out “Hello World” a bunch of times,
and we want to let the user decide how many times. Then we need to figure out
how to take input from the user. We use the cin command here.

Take a look at the program helloworld3.cc now:

/* Hello World program -- with a function */

#include <iostream>
using namespace std;
void helloworld()

cout << "Hello World\n";
return;

}

main()

int i,numtimes;

cout << "How many times do you want to print out a message?\n";
cin >> i;

for (i=1;i<=numtimes;i=i+1)

helloworld();

We have to declare the type of the variable numtimes® before we use it.

5We’ll get to the idea of precision later on, but double precision variables use twice as much
of the computer’s memory, and sometimes take longer to be used in computations, but they
are less susceptible to round-off errors.

SWe also declare a type for i which we will use just a bit later.



Control structures
The next thing that we want to do in programs is to be able to have some process
where the computer can use some criteria to decide whether to keep repeating
a statement or not to. There are three of these in C: the for statement, the
while statement and the do while statement.

When we have a case where we want to do something a specific number of
times the for statement is the easiest way to go. We have a first line with the
starting point for a variable, the ending point for the variable, and the way we
change the variable as we go through the loop.

for (initial;finalyincrement)
{

set of tasks

}

Then we have a set of curly braces which include all the tasks that we
complete. At the end of the set of curly braces, we go back to the beginning
of the loop, after incrementing the variable by the amount specified in the
increment statement.

Sometimes we wish to have conditions that aren’t easily specified in a for
loop. We then have a couple other options: the while loop and the do while
loop. These are almost identical to one another — the only difference is that the
do while loop runs through one time before checking whether the condition to
continue running is met. The syntaxes are:

do

{

set of tasks

}

while (condition is true);
and

while (condition is true)

{

Set of tasks

}

There are many reasons for physics-related tasks why you might prefer to
use a while type loop rather than a for loop. For example, suppose you were
computing the trajectory of a projectile, and you wanted to stop your calculation
when the projectile hit the ground. If you already knew ahead of time how long
the projectile would be in the air (e.g. if you were neglecting air resistance)
then you could do this with a for loop — but then you probably wouldn’t need a
computer to solve the problem. If you don’t know how long the projectile will
be in the air, then you wouldn’t know what to make the maximum value of the



loop.

Conditional statements

The other kind of control structures we’ll want to work with are “condition-
als” — i.e. tasks that we only execute one time, and only if certain conditions
are met. In principle, we can always do this with a while loop, and the other
ways of coding things I will show you here just make things easier.

The workhorse command is the if command. The if command allows also
for else and else if statements, which, again, are unnecessary, but often quite
convenient. The following snippet of code could be used in a computer blackjack
game:

if (total==21)

{cout << ‘‘Blackjack!’’}
else if (total>21)

{cout << ’’Busted!’’}
else if (total<21)
newcard(deck[]);

9

There is also a syntax involving the commands switch and case, which can
make the coding for some tasks a bit tidier and easier to read (but really not
any easier to program), but which is not valuable enough to be worth the time
to teach in this class. If you have a menu of tasks you wish to run through,
you should feel free to google the syntax for using these commands and decide
if you wish to use them.



