
Week 6: Stability of stars

In this week, we will discuss how we determine whether stars are stable, and
we will consider some key instabilities that have strong effects on the evolution
of stars.

There are three kinds of equilibria in nature – stable, unstable, and saddle
points. One can see which type of equilibrium one has by plotting the key quan-
tities versus one another (e.g. energy versus displacement). Stable equilibria
are local minima in energy, unstable equilibria are local maxima in energy, and
saddle points are positions where there is a zero first derivative, but neither a
minimum nor a maximum. Saddle points can exist most readily in multiple
dimensions, where the position represents a minimum with respect to one di-
rection and a maximum with respect to another, but they can also exists for
functions like y = x3.

We need to worry about both thermal stability and hydrostatic stability.
First, let’s consider whether typical stars are globally stable under normal

circumstances. We can write down several different approaches to looking at
the virial theorem. For a gas pressure dominated star:
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where Rgas is the gas constant written as script R in class and in the book, and
the other quantities have the usual meanings.

Now, via the virial theorem,

ugas = −1

2
(urad +Ω)E = −Ugas (3)

Now, remember that Ω is a negative number. Thus, the effect of radiation
pressure is to reduce the effective gravitational attraction.

Next, let’s consider that Ė = Lnuc − L - i.e. the rate of change of energy
is equal to the energy input from nuclear power minus the energy output from
radiation. Thermal equilibrium occurs for Lnuc = L.

What happens if we perturb the star, so that Lnuc temporarily exceeds L?
Then Ė > 0, and since E < 0, |E| will be reduced. Then, since U = −E, U
drops, the star will cool, and the nuclear reaction rate will drop. We call this
secular stability – that the overall long term evolution of the star cannot be
dramatically affected by a small perturbation.

Thermal instability

Stability will be ensured when a perturbation affects the energy supply in
the opposite manner of the perturbation – i.e. as above, when increasing the
energy production rate will cause a change that reduces the energy production
rate.
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Degenerate gases can be thermally unstable. For degenerate gases, the pres-
sure is not a function of temperature (or at least it’s a very weak function of
pressure). E = −U still holds, so expansion will still take place if an increase
in the nuclear luminosity happens, but a drop in temperature will not result.
Nuclear reaction rates are much more sensitive to temperature than to density,
so the reaction rate will not be strongly affected by the expansion, and the tem-
perature will rise, so the reaction rate will then go up. We get runaway nuclear
burning.

Two possibilities exist: a total runaway that leads to an explosion, or a situ-
ation where the gas is heated to the point that gas pressure exceeds degeneracy
pressure, and the gas then cools as it expands.

Some examples of runaways are classical novae (in a small layer on the surface
of a white dwarf), Type I X-ray bursts (in a small layer on the surface of neutron
star) and Type Ia supernovae (globally throughout an entire white dwarf).

Now we can consider how to write down a general criterion for thermal
stability. For stars burning nuclear fuel at their centers, recall that for ¡it all
polytropic models,
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It will also then be true that:
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setting this up as a gas law. Then,

(
4

3
− a)

dρc
ρc

= b
dTc

Tc
(6)

For a < 4
3 , the two sides will have the same sign, and hence contraction will

cause heating and expansion will cause cooling. Heating will drive expansion
by increasing the total energy content of the gas, and this expansion will then
lead to cooling. The stars are thus stable in this regime. For ideal gases, a = 1,
so we are in this regime.

For degenerate gases, a >= 4
3 , and a rise in the energy input will lead to

slight heating, causing a runaway unless/until the heating makes the gas become
ideal.

Thin shell instability

Now, let’s consider the case of a thin shell in a star with properties very
different from those of the gas on either side. This can develop due to shell
burning (i.e. cases where there are thin shells where a particular element is
undergoing nuclear fusion) in the late stages of stellar evolution, so it’s not a
contrived situation.

We’ll let this shell have mass ∆m, and temperature T , and be located in a
star with radius R, at height r0, and have thickness ℓ.

The pressure gradient in the star is given by dP
dm ∝ r−4, so dP

p = −4dr
r .

We also have ∆m = 4πr20ℓρ. We can derive that dρ
ρ = −dr

r
r
ℓ . We can then
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substitute in the pressure gradient and get:
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Making the same substitution of a general equation of state for the gas in
as we did above, we get:
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so a < 4 ℓ
r is needed for stability Essentially, for very thin shells, the pressure

from the rest of the star is so large compared to the internal pressure that
changes in the internal pressure don’t lead to substantial expansion.

Dynamical instability

Next, let’s consider how to test whether a star is dynamically unstable –
that is whether a small perturbation in radius will lead to a restoring force or a
runaway.

Consider a sphere of mass M , with P (M) = 0.
Then:
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gives the pressure at the radius containing mass m.
The density at r(m) is given by ρ = 1

4πr2
dm
dr .

Now consider what happens if the star is compressed uniformly, so that
r′ = (1−ǫ)r. If ǫ << 1, then we can use the first term of the binomial expansion,

and see that (1± ǫ)n = 1±nǫ, so ρ′ = 1
4πr2(1−ǫ)2

dm
dr

dr′

dr = ρ
1−ǫ

3
= ρ(1 + 3ǫ).

Next, we can use the gas law to find the gas pressure:

P ′

gas = P (1 + 3ǫ)γa = P (1 + 3ǫγa), (10)

and the new hydrostatic pressure will be P ′

h = Ph(1 + 4ǫ).
To have stability requires that the new gas pressure is larger than the new

hydrostatic pressure, since then a restoring force will bring the star back into
equilbrium. This is equivalent to requiring γa > 4

3 . In some cases there may be
small regions in the outer part of the star where γa < 4

3 because of ionization
changes, and the star will pulsate.

On the other hand, where the global value of γa < 4
3 , then the whole star

will be unstable. This may happen in three cases: relativistic degenerate gases,
where the dynamical instability leads to a Type Ia supernova, as the star col-
lapses, triggering runaway nuclear burning; radiation pressure dominated stars,
where the star is approaching being unbound as the radiation pressure stars to
dominate over gas pressure; and cases where there is an ionization instability (or
other instability that leads to sharp changes in the number of particles) in the
core of the star, which may happen if the core is dominated by electron-positron
pairs or iron disintegration starts taking place.

Convection
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The maximum possible radiative flux is given by κF < 4πcGm – if this
criterion is violated, then hydrostatic equilibrium is no longer possible. For large
F (as in the interiors of massive stars) or large κ, as in the envelopes of low
mass stars, this criterion can be violated, leading to a loss of local hydrostatic
equilibrium, and, instead, convective energy transport. In fact, it’s a bit easier
than this to get convection started.

The standard criterion for convection is called the Schwarzschild criterion,
after Karl Schwarzschild, who derived it in 1906.1 A more advanced criterion,
the Ledoux criterion, can be derived by considering also the effects of having
a chemical composition gradient in the gas. You should be aware that this
difference exists, and is sometimes important, but we won’t deal with that
subtlety in this course.

I’ll just outline the physics of the derivation here, and give the answer,
rather than repeating the entite derivation. We consider a fluid element that is
displaced upwards in the star. It is then hotter than the nearby gas, so it will
expand until it is in pressure equilibrium. We then consider its density relative
to the density of the nearby gas,. No heat exchange will be, since the dynamical
time is much less than the thermal time, but some work will be done. Now, we
compare the density of the fluid element that was displaced with the density of
the local gas. If the fluid element is denser than the rest of the star, it will sink
back down. Otherwise, it continues to rise due to buoyancy. In the latter case,
the convective instability takes place.

The result of a fair bit of algebra is that:

κF < 4πcGm[4
γa − 1

γa
(1− β)] (11)

is the criterion which must be satisfied for a star to be stable against convection.
This is slightly stricter than the Eddington limit, because the term in square
brackets will always be less than 1 – but as β approaches 0 (i.e. the fully
radiation pressure dominated case), then the two limits converge (since γa is
4/3 for radiation pressure domination).

Thus, where κ is large, in stellar atmospheres of cool stars, for example,
convection can set in at low luminosities – in fact stars less than about 0.25 M⊙

are convective throughout. Stars with the CNO cycles in their cores are also
always convective in the core. A small range of masses exists where small core
and envelope convection zones can exist simultaneously.

Convective energy transport: the mixing length

We can next consider how far a mass element can travel before mixing in with
its surroundings, and stopping to travel. Even in detailed stellar models, this
mixing length parameter is often used as a free parameter because convection
is so difficult to calculate directly. We define a number α to be the ratio of the
convective distance travelled to the pressure scale height.

1This is the same Schwarzschild who derived black holes in general relativity – something

he did from a trench during WW I. His son, Martin, did the first serious computer models for

stars.
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We then wish to express the heat transfer in terms of α and other quantities
we already know. The δT for a mass element will be: (|dTdr |star − dT

dr |a)ℓc, where
the first term in parentheses is due to the global temperature gradient, and the
second is the adiabatic change of the fluid element moving through the star,
and ℓc is the distance travelled by the fluid element.

The convective heat flux – energy per unit area, per unit time, will be:

Hc = ρvccpδT, (12)

with vc the velocity of the convective cell, equal to
√
g′ℓc, with g′ equal to the

buoyant acceleration.

Then, vc =
√

α(Pρ )| δTT |, and since
√

P/ρ is the sound speed, there is a

simple relation between vc and the sound speed.
We can then re-write the convective heat flux as:

Hc = ρcpT
√

P/ρ[(
dlnT

dlnP
)star − (

dlnT

dlnP
)a]

3/2α2 (13)

Then, F is equal to the sum of 4πR2Hc and the radiative term, and the
temperature gradient can be both large and complicated in form.

Adiabaticity

We can now look at the energy transport and see how it deviates from pure
adiabiticity. δT/T is the superadiabaticity – the energy transferred. We’ll just
express things in dimensional units, ignoring small factors.

Then, Hc = L/R2, ρ = M/R3, cpT = U/M , and P/ρ = GM/R, and we’ll
take α = 1. Then, (δT/T )3/2 ∼ L/U(GM/R3)−1/2. But the L/U is just the re-
ciprocal of the thermal timescale, adn the other term is the dynamical timescale,
so we have that the fractional temperature change is (tth/tdyn)

−2/3, which is
about 10−8 for typical stars. Close to the stellar surface, these approximations
may break down, but basically, this small energy change doesn’t lead stellar
interiors away from being adiabatic, and this is why polytropic models work
well.
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