
Week 5: Simple equilibrium configurations for
stars
Follows on closely from chapter 5 of Prialnik.

Having understood gas, radiation and nuclear physics at the level necessary
to have an understanding of the basic processes inside stars, we can now move
to developing some formalisms for the basic equilibrium configurations of stars.

There are four basic equations that need to be solved. Here we will have
already made one simplifying assumption, that the chemical composition of the
star is constant throughout – this is a good approximation for getting a basic
picture of what the main sequence structure of a star looks like, but obviously
if this approximation is taken too far, then the star cannot evolve.
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To these, we add a few relations that describe the pressure, opacity, and
heat generation:
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aT b (6)

q = q0ρ
mTn (7)

Additionally, since we have four first order differential equations, we need
four boundary conditions. Three are obvious: at the center, m = 0 and F = 0,
and at the surface, P = 0. (Note that this one is only an approximation,
depending on how the surface is defined.) The fourth boundary condition must
be some relation between the temperature at the surface and the temperature
somewhere in the stellar interior.

One can see that this will not be an easy set of equations to solve, and that a
numerical approach will be required. The equations are coupled and nonlinear,
and the value of pressure varies by 1011 between the surface and center, and
the value of temperature varies by more than a factor of 1000. Despite all this,
considerable progress was made on understanding stellar structure long before
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the development of electronic computers1, and before the discovery of the key
bits of nuclear physics that allow us to understand energy generation in stars.

What allowed progress to be made was the development of some key simpli-
fications which turn out to be reasonable approximations of what really happens
in stars. We have already discussed one – the assumption of uniform composi-
tion.

1 Polytropes

One simplifying assumption that can be made is that the equation of state in the
star is constant. This is sometimes a very good assumption, and sometimes poor
– but it allows for a straightforward calculation of the structure of something
like a star.

We can start with the equation 1, multiply by r2/ρ, and differentiate with
respect to r:
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and we get an equation whose right side can be substituted with −4πGρ.
Now, we set P = Kργ , a “polytropic equation of state”, defined by K and

n, the polytropic index, which is defined such that γ = 1 + 1
n .

Then, substituting in for P with Kρ1+
1
1 everywhere, we get:
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We then set up several substitutions to non-dimensionalize the equations:

ρ = ρcθ
n (10)

where ρc is the central density;[
(n+ 1)K

4πGρ
n−1
n

c

]
= α2 (11)

and

r = αξ (12)

which we can then combine to produce the Lane-Emden equation:
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d
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)
= −θn. (13)

1Edward Charles Pickering, director of the Harvard Observatory around the turn of the
20th century, had a group of women who worked under him who did calculations by hand,
and also classifying spectra of stars, and were known as the “Harvard Computers”. A few,
notably Annie Jump Cannon, made major contributions to astronomy that went well beyond
just doing calculations and classifying spectra.
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This equation has two boundary conditions: θ = 1 and dθ/dξ = 0 at ξ = 0.
This still requires numerical integration unless n = 0 or n = 1, but the numerical
integration is fairly straightforward. When ξ = 0, the value is ξ is referred to
as ξ1, and the surface of the star has been reached: R = αξ1.

The mass of the polytrope is given as:

M =

∫ R

0

4πr2ρdr = 4πα3ρc

∫ ξ1

0

ξ2θndξ (14)

Then, M = 4πα3ρcξ
2
1

(
dθ
dξ

)
ξ1

, based on substituting in θn from the original

Lane-Emden equation.
For n = 0 and n = 1, there are simple analytic solutions to the Lane-Emden

equation, but in general, numerical calculations are needed – but, unlike for the
case of the full set of stellar evolution equations, these numerical calculations can
be done in a straightforward way, since we now have transformed the problem
into integration of a simple second order differential equation in one variable.

We can define 4 polytropic constants – Dn,MN , RN , and Bn, where the first
three are easy to remember, since they relate to density, mass, and radius, and
the fourth is a number close to 1 that serves as a catch-all in the final pressure
equation.

ρc = Dnρ̄ (15)

defines Dn, which is equal to −
[

3
ξ1

(
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dξ

)]−1

.

Next, we can take the mass equation, and the defintion of α, and find:(
GM

Mn

)n−1(
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=
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4πG
, (16)

where Mn = ξ21

(
dθ
dξ

)
ξ1

and Rn = ξ1. We note that this gives a mass-radius

relation for a given polytropic index.
For n=3, the mass is not a function of the radius – it’s only a function of K,

the scale factor for the pressure-density relationship:

M = 4πM3

(
K

πG

)3/2

(17)

Thus, for a given K there is only a single possible value of mass for an n = 3
polytrope.

Another special case is the n = 1 polytrope, in which only one value of R

can exist, R = R1

(
K

2πG

)1/2
and it is independent of M .

In between,

R3−n ∝ 1

Mn−1
, (18)

meaning that more massive stars are denser.
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Now, we can pull out K from the mass-radius relation, and use Pc = kρ
1+ 1

n
c ,

and put all the remaining n dependence into Bn, which turns out always to be
approximately 1, and we can get:

Pc = (4π)1/3BnGM
2/3ρ4/3c , (19)

yielding the result that Pc ∝M2/3ρ
4/3
c for nearly any equation of state.

2 The Chandrasekhar mass

Despite the fact that white dwarfs are exotic stars, and inherently quantum
mechanical, they actually provide one of the easiest challenges for stellar physics.
This is because white dwarfs are the one class of stars with very simple equations
of state.

Let’s first consider the special case where the white dwarf is low mass, so
purely non-relativistic, and has a sufficiently low temperature that thermal mo-
tions can be ignored. It then follows an n = 1.5 polytrope, since its equation
of state is exactly that for a non-relativistic degenerate electron gas. Then,
R ∝M1/3, and barρ ∝MR−3 ∝M−2. Eventually, the density becomes so large
that the electrons must become relativistic. Then, the solution will approach a
n = 3 polytrope, for which only one mass is possible (for a given value of K).
We can then take the value of K for degenerate relativistic electrons from a few
weeks/chapters back in the notes/book, and find:

Mch =
M3

√
1.5

4π

(
hc

Gm
4/3
H

)3/2

µ−2
e , (20)

which yields Mch = 1.46M� for matter with equal numbers of neutrons and
protons. For iron, the number will be about 15% lower. For pure hydrogen, it
would be a factor of 4 higher, but of course in a star made of 5M� of hydrogen,
fusion would take place, so the point is moot.

3 The Eddington Luminosity

Is there some fundamental limit to the rate at which energy can be produced in
a star, or the rate at which energy can be transported through a star, without
a violation of the basic assumptions that go into what we’ve done here? The
answer is yes; although for the latter question, we can consider alternative means
of energy transport.

So, let’s start with the equation for radiation pressure: Prad = 1
3aT

4. We
can then differentiate this with respect to radius; substitute into equation 3;
and divide by equation 1. This yields: dPrad

dP = κF
4πcGm .

This gives an upper limit for the stellar luminosity and for the star to be in
hydrostatic equilibrium, since dPrad

dP < 1 (since the radiation pressure must ev-
erywhere be less than the total pressure (or the gas pressure would be negative),
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and hence cannot change by more than the total pressure). Then, κF < 4πGcm,
and L < 4πGcm

κ .
Now, at high heat flux, or at low opacity, this condition may be violated, and

then we lost hydrostatic equilibrium, at least locally. In the interior of a star,
convection will occur, and in the exterior, a wind will be driven. We also get a
local maximum rate of energy generation at the center of the star, qc <

4πcG
κ .

The maximum luminosity, called the Eddington luminosity can be re-written
as:

LEDD = 3.2× 104
(
M

M�

)(
κ

κes

)−1

L� (21)

Since the solar luminosity is about 4 × 1026W, or 4 × 1033ergs/sec, the
Eddington luminosity can also be written as 1.38×1031W or 1.38×1038ergs/sec.

4 Eddington’s “standard” model

This treatment of radiation pressure as a fundamental quantity can help mo-
tivate an approach to a key historical simplifcation of the equations of stellar
physics, one also developed by Eddington. Eddington found that with the as-
sumption that the total pressure is proportional to gas pressure everywhere in
the star, then an n = 3 polytrope can be taken as the solution for stellar struc-
ture in all cases. This leads to mass being a function of K, with K a function
of the ratio of radiation to gas pressure.

Eddington justified the assumption that gas pressure is proportional to radi-
ation pressure with an approach that is not rigorous, but which was instrumental
in getting some sort of stellar model to work. He first wrote:

F

m
= η

L

M
, (22)

defining η as the ratio between luminosity and mass produced within a radius
and the same quantity at the outside of the star. It is clear that η increases
inwards in the star.

He next noted that dPrad

dP = κF
4πcGm , which we see above. Clearly, since

the temperature is larger inwards and Kramer’s opacity decreases sharply with
increasing temperature, κ should increase outwards. Eddington then decided to
calculate what would happen if one assumed κη ≡ κs, where κs is a constant.
Then:

Prad =
κsL

4πcGm
P, (23)

where L = LEDD(1− β), where β =
Pgas

P , and we now have constant β.

We can then define aT 4

3(1−β) = R
βµρT .
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This yields three equations:

T =

[
3R(1− β
aµβ

]1/3
ρ1/3, (24)

P = Kρ4/3, (25)

and,

K =

[
3R4(1− β)

aµ4β4

]1/3
. (26)

Since K is a constant, we get an n = 3 polytrope. Then, we get M =

4πM3

(
K
πG

)3/2
, and we can substitute in M3 and R, and we get Eddington’s

quartic equation:

1− β = 3× 10−3

(
M

M�

)2

µ4β4. (27)

An interesting point is that only in a narrow range of M is β anything other
than very close to 0 or very close to 1 – i.e. only for a narrow range of M is
the star anything other than purely gas pressure dominated or purely radiation
pressure dominated – and this range turns out to be the range for which stars
actually exist.

Two key general results can be found:
(1) Massive stars are radiation pressure dominated – to the extent that very

massive stars come very close to the Eddington luminosity and probably drive
stellar winds (which they are observed to do).

(2) If we take Eddington’s quartic equation, and substitude L/LEdd for
(1−β), then note that LEDD ∝M , we find that L ∝M3, which is a pretty good
approximation to reality, at least for massive main sequence stars.

This was not known from observations at Eddington’s time.
It is fascinating to see how far Eddington came toward describing stellar

structure reasonably accurately with essentially no understanding of the nuclear
physics that provided the energy source!

5 The Cowling approximation – point source
models

An alternative simplification – one which can better describe the lower main
sequence – is that all of the nuclear power is generated from a point in the
center of the star. Then, we can set F = L, and let F be a constant. The
solutions are a bit more complicated and require numerical integration, but
they were numerical integrations 2 that could be done in the 1930’s.

2Numerical integration basically consists of plotting a function, then fitting rectangles or
trapezoids, or other shapes along the curve, and adding up their areas. Some methods use some
tricks to reduce the number of shapes that need to be drawn, but increase the complication
of the shape so that it’s a closer approximation of the curve, but the basic underlying idea is
the same.
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Next, we set κ = κ0ρ
aT b, to define the opacity, since it need not be related

to the radiation pressure.
Then:

dP

dr
= −Gmρ

r2
(28)

dPrad
dr

= −κ0L
c

ρa+1T b

4πr2
(29)

dm

dr
= 4πr2ρ. (30)

This can be integrated numerically for any given opacity model. For the
simplest opacity model, a = b = 0, constant opacity (relevant, e.g. in cases
where electron scattering dominates), some additional progress can be made in
solving the equations in a more straightforward way. We won’t go into this level
of detail in this course – by we note that the resulting solutions give a steeper
M−L relationship than the Eddington model – and thus they agree better with
real low mass stars.

This is not surprising – the Eddington model implicitly assumes that fusion
is taking place all the way out in the envelope of the star, whereas low mass
stars barely have high enough density and temperature to have any fusion at
all – putting all the fusion in their cores is a better approximation.
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