
Week 3: Basics of gas and radiation physics

This week, we will go through the basics of gas and radiation physics, with,
not surprisingly, a focus on the aspects that apply in stars. Some of you may
have seen at least bits of this material in some other classes (particularly if
you’ve already taken statistical mechanics), but I will approach it as though it’s
completely new to everyone.

Much of stellar physics concerns itself with trying to understand the equa-
tions of state of gases. An equation of state is just a relation between pressure
and density. The simplest equation of state is the ideal gas law, which gives
pressure proportional to density. Now, let’s try to justify (or refute) that law
as it applies in stars.

We can go back to the calculation we did a few lectures ago, in which we
found that the mean temperature of a star is high enough that the gas should be
fully ionized. Thus, at least deep in the stellar interior, this should be the case.
We thus need to worry only about Couloumb interactions, and not molecular
nor atomic processes.

We can then find the mean distance between charged particles by taking the
cube root of the number density of particles, and get:

d =

(
4πAmh

3M

) 1
3

R. (1)

The Coulomb energy per particle can be found to be:

εC ≈
(

1

4πε0

)(
Z2e2

d

)
. (2)

We can then substitute in the value for kBT̄ , the mean temperature, that
comes from finding the internal energy by applying the virial theorem and the
gravitational binding energy. We get εC/kbT = 0.01(M/M�)−2/3. Note that
there is no radius dependence here. Since the minimum mass of a star is 0.08M�,
we find that all stars have negligible Couloumb interactions in their cores. On
the other hand, for planets, which have masses less than 10−3M�, the Couloumb
interactions can be extremely important – this explains why planets are in the
regime where matter makes a transition from gas to solid. [Also - someone asked
in class if Jupiter has a solid core - the answer is that as of the 2008 article I
could find on the topic, it was not a settled issue].

Types of pressure and pressure relations
A generic expression for pressure, which applies both to particles with mass

(gas pressure) and light (radiation pressure), can be derived:

P =
1

3

∫ ∞
0

vpn(p)dp, (3)

where v is velocity, and p is momentum. This relation can be proved by consid-
ering the transfer of momentum that takes place when a particle bounces off a
wall.
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If we consider non-interacting species, the pressures of the different species
can be added to get a total pressure. In a star, the species will be ions, electrons,
and photons:

P = PI + Pe + Prad = Pgas + Prad, andPgas = βP (4)

defines β, the ratio of gas pressure to total pressure, a quantity which is used
extensively in Eddington’s simple stellar model.

Ion pressure can be computed in a straightforward way. We take the ideal
gas law, PI = nIkBT , which we can find from integrating equation 3 with a
Maxwellian velocity distribution. We can then consider different types of ions:

nI =
∑
i

ni =
∑ ρ

mh

Xi

Ai
. (5)

We can then set a mean atomic mass, µI ≡
∑
i

Xi

Ai
, allowing us to set

nI = ρ
µImH

.
Then,

1

µI
≈ X +

Y

4
+

1−X − Y
< A >

, (6)

where X is the hydrogen abundance, Y is the helium abundance, and 1 −
X − Y = Z is the metal abundance. We will generally avoid using Z in this
course in cases where there might be some confusion with the ion charge, but
be aware that it is common usage in scientific papers.

Now, we can then make another definition of a new symbol: R ≡ kB
mH

, so

PI = R
µI
ρT . The textbook uses a fancy script R for this, but I cannot figure

out how to make that display in LaTeX.
The value of muI for the Sun is about (0.74 + 0.24/4 + 0.02/20)−1, so µI is

about 1.25.
Electron pressure can be treated in essentially the same way, except that

there are many electrons per atom for more highly charged elements:

1

µe
= X +

1

2
Y + (1−X − Y )

〈
Z

A

〉
. (7)

For metals,
〈
Z
A

〉
is about 0.5, since most of the ions are in the lower Z metals,

which have equal or nearly equal numbers of protons and neutrons.
Then, µe ≈ 2(1 +X)−1, and µe is about 1.17 for solar composition material,

and 2 for material with almost no hydrogen (as, for example, white dwarfs will
be).

We can then set Pe = R
µe
ρT . Summing the two components of the gas

pressure together, we get:

1

µ
≡ 1

µI
+

1

µe
, (8)

and Pgas = PI + Pe = R
µ ρT , with µ = 0.61 for solar composition material.
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Thus, for pure hydrogen, the gas pressure will be half electron and half ion,
while for elements with neutrons, the electron pressure will dominate.

We have assumed so far that there is complete ionization and that there
are no interactions between particles. These are generally fine, but are purely
classical. Degeneracy pressure can often be important in stars:

∆V∆3p ≥ h3 (9)

is an expression of the uncertainty principle that’s in a useful form for us – with
∆V the volume per particle, and ∆p momentum, with the cubing because we’re
working in three dimensions.

If we compress gas, ∆V ∝ ρ−1, and eventually, ∆V becomes small, so that
we’ll be required to enforce a minimum momentum above the thermal value.

Because proper calculations are difficult, we’ll develop intuition by consid-
ering two cases: non-relativistic electrons at absolute zero temperature, and
ultrarelativistic electrons at absolute zero temperature, but with the speeds
purely from degeneracy pressure, and not from random thermal motions.

We can find from combining the Heisenberg and Pauli principles that:

ne =

∫ p0

0

2

h3
4πp2dp. (10)

One can then integrate out the electron density in momentum space, and get

the electron density, which yields p0 =
(

3h3n3

8π

)1/3
. We can then take equation

3 and integrate it with v = p/me, and we find:

Pe,deg =
8π

15meh3
p50 = frach220me

(
3

π

)2/3

m
−5/3
H

(
ρ

µe

)5/3

. (11)

Note that the degeneracy pressure is inversely proportional to the particle
mass (the mH term is just to convert between ρ and particle number density).
This makes electron degeneracy pressure relevant at far lower densities than
baryon degeneracy pressure. This means also that when we do deal with neutron
degeneracy pressure, it will happen under extreme relativistic conditions (i.e.
general relativity and not just special relativity becomes important, and it turns
out that some effects in particle physics become important, and these are not
all well understood). The equation of state for neutron stars, and hence the
mass-radius relation for neutron stars, is still a topic of active research, both
experimentally and theoretically.

We can also consider the opposite extreme, that of degeneracy of relativistic
electrons. Even for white dwarfs, p0/me approaches the speed of light. Fortu-
nately, we are still at low enough densities that we can do with with just special,
rather than general relativity. Replacing v by c, and mv by γmc, and doing the
integrals out, we get:

Pe,r−deg =
hc

8

(
3

π

)1/3
1

m
4/3
H

(
ρ

µe

)4/3

. (12)
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In reality, as the white dwarf mass increases, there will be a gradual transi-
tion between the two branches.

We should also remember that there will be stars where degeneracy pressure
is a partial contributor to the total pressure, where kBT is an appreciable, but
not large fraction of p0. For such stars, there will be some particles at p > p0,
but there will be a skewing of the momentum distribution to higher momenta
than a Maxwellian with kBT would have at infinitessimal density.

Radiation pressure
Now we can consider the concept of radiation pressure. When photons trans-

fer momentum to gas particles, they exert radiation pressure. In thermodynamic
equilibrium, we get the Planck distribution for photons frequencies:

n(ν)dν =
8πν2

c3
dν

e
hν
kBT − 1

. (13)

Given that v = c and p = E/c for photons, we can integrate this through
equation 3, and get:

Prad =
1

3

∫ ∞
0

c
hν

c
n(ν)dν =

a

3
T 4, (14)

with a =
8π5k4B
15c3h3 = 4σ

c , where σ is the Stefan-Boltzmann constant.
Internal energy of gas and radiation
Next, it’s useful to look at the internal energies for gas and radiation. The

internal energy per unit mass, u can be written as:

u =
1

ρ

∫ ∞
0

n(p)ε(p)dp (15)

where ε(p) is the energy associated with momentum p. We can then integrate
over a Maxwellian for particles or over a Planck function for photons. (In princi-
ple, we could integrate over non-equilbrium distributions as well, but we will see
in a few pages that the equilbrium distributions are excellent approximations of
what happens in stellar interiors).

For non-relativistic particles, ε(p) = p2

2mg
, while for relativistic particles, we

need to use (γ − 1)mgc
2, where γ here is the Lorentz factor. The “minus 1”

term is so that we subtract off the rest mass of the particle, and integrate out
only the kinetic energy.

ugas = 3
2
Pgas
ρ is the ideal gas law in a new form, since ugas = 3

2nkBT/ρ, and

Pgas = nkBT . For relativistic degenerate electrons, we can (in principle) run

through some algebra, and find that ugas = 3
Pgas
ρ , the same result we get for

photons by integrating out the Planck distribution with ε = hν. Thus we see an
example of something that happens frequently in physics – at ultrarelativistic
speeds, particles and photons begin to act in very similar ways. There are some
connections between this result and grand-unified theories of particle physics,
although the grand unified theories are obviously much more involved than just
this.
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Adiabatic processes
Adiabatic processes are ones in which there is no heat exchange with the

environment. We can go through a fair bit of algebra and we end up proving

that for such processes, if u = φPρ , then P ∝ ρ
φ+1
φ . We then define γa ≡ φ+1

φ ,
and call it the adiabatic exponent, and the pressure-density relation is then
the equation of state for adiabatic processes in that gas. For non-relativistic
ideal gases, this will be 5

3 , while for relativistic gases or photons, it will be 4
3 .

In more complicated cases, the value will tend to lower values – if there are
internal energy states, there are other modes in which to store energy besides
just kinetic energy, and this will increase the value of φ, leaving φ+1

φ smaller
as φ increases. Complex molecules, with their large numbers of vibrational and
rotational modes, can have γa approaching 1. In stellar interiors, γa will be 5

3
except when dominated by radiation pressure, or when in a region of space where
an important atom’s ionization state is changing quickly, or photon-photon pair
production is taking place. By important atoms, we basically mean H and He
except in some evolved stars where metals can dominate the opacity.

Radiative transfer
Now we can start to consider how light propagates through a star. We can

make the “plane-parallel” approximation for most of the star. Near the surface,
treating the star as a series of parallel planes can lead to some problems (e.g. it
wouldn’t account properly for limb darkening). We won’t do much with stellar
atmospheres in this course, but bear in mind that when you actually get to the
region of the star from which photons escape, you do have to worry about more
complicated physics (well – really – more precise treatment of the same basic
physics).

For now, though, we can consider a box of thickness dr with flux H entering
from the left, and H − dH leaving on the right. Flux in this case means lumi-
nosity per surface area, so it is related to the flux F we discussed earlier by the
surface area – generally 4πr2 in stars.

Now, we can write down:

dH = −κHρdr, (16)

which defines κ, which is called the opacity coefficient – it’s the opacity per unit
mass (remember that since we are keeping track of density most of the time,
because the gravitational force helps determine the stellar structure, we like to
express things per unit mass rather than per atom).

We cna also write:
dτ ≡ −κρdr, (17)

where τ is the optical depth. We define the optical depth to be zero at ∞, so it
reaches a maximum at the center of the star.

Then, H(r) = H0e
−(τ0−τ(r)), where τ0 is the optical depth at the center of

the star and H0 is the flux at the center of the star. We can also then see that
(κρ)−1 is the mean free path length for a photon. Finally, we can use this to
come up with a sensible definition for the radius of a star. As gas clouds, stars
don’t have fixed surfaces from which there is zero density, so instead, we define
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the radius to be the radius from which τ is unity. This is the radius from which
the light “typically” comes.

Interaction processes with light
Let’s remember that essentially all physical processes have an inverse. This

gives us a useful way of figuring out what the absorption processes will be in
a star – they’re the opposite of key emission processes. There are six radiative
absorption/scattering processes that are worth mentioning here. Two are com-
mon in stellar interiors, two are common in stellar atmospheres, and two are
not common in stars, at all, but I’ll mention them anyway. I’ll list them in that
order.

• Electron scattering. In the low energy regime, this is called Thomson
scattering, and it changes the direction of a photon without changing
its energy appreciably. In the high energy regime, it’s called Compton
scattering, and it also changes the energy, transferring some energy to the
electron. Using the Compton scattering formulae for Thomson scattering
gives the right answer, but it’s a lot like using special relativity to do
Newtonian mechanics problems – it is, strictly speaking, more correct,
but the extra accuracy isn’t worth the effort (or the computer time, if
you’re running a computer model of a star). Below T ≈ 108−9K, Thomson
scattering is a pretty good approximation of what’s happening.

• Free-free absorption. This is the inverse process of bremsstrahlung radia-
tion. When you have one charge interact with another, and accelerate it, it
will emit a photon – that’s bremsstrahlung – remember from electromag-
netism that acceleration of charges (or magnetic fields) always produces
radiation. In the presence of a photon field, the energies of some of the
photons can be absorbed, and can increase the velocities of the particles,
rather than decreasing them to emit light as bremstrahlung does.

• Bound-free transitions. This is another way of saying photoionization – the
absorption of a photon to knock an electron out of an atom. This produces
an “edge” in a spectrum – a feature which is sharp in one direction in
wavelength/frequency space and falls off gradually. The reason is that
the cross-section for interaction is maximum when the photon has exactly
the right energy to make the ionization happen, but photons with extra
energy can be absorbed (albeit with a lower probability) and then just
leave the extra energy as kinetic energy for the electron.

• Bound-bound transitions. This is when a photon causes an electron to
jump to an excited state, but one still in the atom. This causes a line in
a spectrum.

• Pair production. This can be the interaction of two photons to produce an
electron and positron, or a photon to scatter off an electron or positron and
produce a pair. One needs 2 times the electron rest mass in the photons
as a threshold for pair production to take place. These conditions are rare
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in stars, but when pair production happens in stars, the consequences can
be profound – this can enable positron capture by nuclei, which can be
quite important for the formation of certain chemical elements which are
otherwise hard to form.

• Synchrotron/cyclotron radiation/absorption. This is the production or
absorption of radiation through interactions with charged particles and
magnetic fields. Cyclotron is the term used when the electrons are non-
relativistic, so that the frequency of the radiation is essentially the fre-
quency with which they orbit around magnetic field lines. Synchrotron
radiation is the relativistic limit, where the higher harmonics of the orbit
frequency are much more important. The magnetic fields inside stars are
generally not large enough for synchrotron or cyclotron absorption to be
important. In stellar coronae the magnetic fields can be large, and the
particle energies can lead to strong cyclotron or synchrotron radiation.

Getting opacities is extremely tedious computational work. Usually grids
are produced, and then scaling relations are developed. We’ll usually talk about
something called the “Rosseland mean” opacity for this course. Basically, this
involves: (1) assuming that the photons and gas are at the same temperature,
which can be shown1 through careful numerical work to be an excellent assump-
tion (2) putting in a blackbody spectrum, and getting the weighted mean opacity
over the blackbody. Then, we do not need to calculate asborption coefficients as
a function of wavelength. We can then just keep track of opacity as a function
of density and temperature. It will turn out that power law approximations are
pretty good for both.

Electron scattering is simple – it’s just proportional to the Thomson cross
section, which is independent of temperature and density. Then, κes = 1

2κes,0(1+
X), with κes,0 = 0.04 m2 kg−1. In the extreme relativistic regime, the cross-
section for electron scattering drops a bit due to the “Klein-Nishina” correction,
but that doesn’t occur in normal stars.

For free-free absorption in a medium:

κff =
kappaff
µe

〈
Z2

A

〉
ρT−7/2 (18)

with the same 1
µe

= 1
2 (1 + X) substitution made here as for electron scat-

tering. This is often called Kramers’ opacity law, and we can substitute in
7× 1018m5kg−2K7/2.

I also then showed you a plot from the Los Alamos opacities tables for dif-
ferent values of ρ, and it was clear that there were some wiggles in the opacity
due to atomic features (mostly where the ionization state of helium changes).
For the most part, though, the curves are pretty smooth, and pretty well ap-
proximated by Kramers’ law plus electron scattering.

1The phrase “can be shown” in books or journal articles or seminars almost always also
means that it won’t be shown, but could be, often in an extremely complicated mannner, and
sometimes only by someone with more expertise than the presenter.
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Now, we can check the numbers in a stellar interior and see how self-
consistent some of our original assumptions are. E.g. inside the Sun, κ is
about 0.1 m2/kg, and ρ is about 1000 kg m−3, so the mean free path of a pho-
ton is about 1 centimeter. The temperature change over that range will turn
out to be about 10−3K. This makes a blackbody a good approximation.

Now, let’s consider what the temperature gradients really are. The rate
at which photon flux is absorbed can be converted into a rate of momentum
transfer – a force. We then do this per unit area and unit distance, and get a
radiation pressure gradient:

Hκρ

c
= −dPrad

dr
(19)

Next, we substitute in for the radiation pressure, and substitute F = 4πr2H,
and get:

dT

dr
= −

(
3

4ac

)(κρ
T 3

)( F

4πr2

)
(20)

One thing to note here is that if the radiation pressure gradient is too large,
then it actually stops being possible to transfer energy that quickly through
radiation alone, and particle motion is actually driven. This leads to convection
in stellar interiors, and stellar winds in some extreme cases at the exteriors
of stars. We’ll come back to this later, but essentially when the temperature
gradient is “too large” then we get convection.
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