
Week 8: Stellar winds

So far, we have been discussing stars as though they have constant masses
throughout their lifetimes. On the other hand, toward the end of the discussion
of what happens for post-main sequence evolution of stars, we realized that
stars which have masses larger than 1.4 M⊙ end their lifetimes in some kind
of catastrophic state, undergoing supernova explosions, or at least undergoing
formation of neutron stars. At the same time, in star clusters where the main
sequence stars are well above 2M⊙, we see young white dwarfs in many cases.
Also, the supernova rate that we see in the Universe isn’t nearly as high as what
we would expect based on a naive interpretation of the picture we looked at last
week.

Something is clearly incorrect in our picture. The answer turns out to be
that stars lose mass over their lifetimes. Massive stars tend to lose a lot of their
total mass, and to lose mass even on the main sequence. Lower mass stars tend
to lose much smaller fractions of their total masses, and to lose mass primarily
when they have evolved into giants.

Observational evidence for mass loss

Now, instead of just invoking mass loss as a convenient way to explain the
discrepancies between our simple picture of stellar evolution and the observa-
tions of, for example, white dwarfs in young-ish star clusters, we would like to
see direct evidence that stars lose mass. One of the most prominent and earli-
est examples of evidence for stellar mass loss is that some stars show what are
called P Cygni profiles in their spectra. P Cygni is a particular variable star,
and often astronomers classify variable stars by their prototype object.

A P Cygni profile is a line profile where the same atomic transition is seen
as a blueshifted absorption line and a redshifted emission line. This can be
explained in terms of a stellar wind as follows:

1. The star is losing mass, in the form of a wind that moves radially outward
from the surface of the star.

2. The gas in the outflow absorbs light from the star’s continuum. In some
cases, this absorption will take the form of an atomic transition. The
excited states will decay, and re-emit light at the same wavelength.

3. The absorption will be of light moving outward, away from the star. The
emission will be in a random direction.

4. Therefore, when the light is moving directly from the star toward the
observer, there will be an absorption line. Every other direction will show
only an emission line, because the absorbed light wasn’t coming toward
the observer anyway, but some fraction of the re-emitted light will come
toward the observer.

5. If there’s a stellar wind, the absorbed light will preferentially be blue
shifted, since the wind in that direction will be moving toward the ob-
server. The wind in all the other directions will be, on average, redshifted,
but also spread over a broader range of wavelengths.
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Very detailed theoretical modelling of the line profile can tell us something
about the wind’s velocity and density structure and give the mass loss rate. We
won’t learn how to go about the actual mechanics of doing that in this course.

The range of stellar mass loss rates turns out to be quite large. In some cases,
like for the very most luminous stars, the mass loss rate can be 10−4M⊙ per
year. Since these stages of stellar evolution can last of order millions of years,
stars can lose ten or more solar masses of material through stellar winds. On
the other hand, the Sun is a more typical star in terms of stellar mass loss rate,
and its mass loss rate is about 2× 10−14 solar masses per year – the mass loss
from solar-type stars has essentially no impact on their main sequence evolution
– but as we will see later, mass loss after the main sequence can start to become
much more important.

Non-steady state models

To deal with stellar winds, we have to make some fundamental changes
to how we calculate things for stellar models, relative to what we were doing
before. Up until now, we have assumed that the continuity equation is the same
as conservation of mass. Now, we will have to deal with the cases where mass is
not conserved in the star. It is, of course, still conserved in the Universe. One
of the key consequences of this is that we won’t be able to integrate over mass
to get out quantities for the star, but we will instead have to integrate over
volume. We will use the same notation we have before in the course, where d
differentials are with respect to space/mass, and δ differentials are with respect
to time. A key difference now will be that the time derivatives won’t all be
expected to vanish once we sort everything out. So, over δt, we expect δ(ρdV )
= dV δρ to be the net mass flow.

We define J to be the mass flux, and set it equal to 4πr2ρv, where v is the
flow velocity. We can see in a straightforward manner that J will have units of
mass per unit time.

Then:

dV δρ = J (V )δt− J (V + dV )δt. (1)

The equation above essentially states that the change in the density in a
volume element in a unit of time is equal to the mass flux over a unit in time
into that volume element minus the mass flux out of the volume element in the
same unit of time. We can differentiate with respect to time and volume and
get a new continuity equation:

∂ρ

∂t
+

∂J

∂V
= 0. (2)

For steady state flows, the local density remains constant, even as the mass
moves around, so the first term of the continuity equation vanishes, and that
implies that J does not change as a function of radius, so we can state that:

J = 4πr2ρv = Ṁ, (3)

and that Ṁ is a constant.
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Now, since we have net flows, we need to consider both the time and space
derivatives of other properties of the gas. For an arbitrary quantity f , we can
write down:

ḟ =
∂f

∂t
+ v

∂f

∂r
(4)

From much earlier in the course, we had derived:

r̈∆m = −
Gm∆m

r2
−

∂P

∂r

∆m

ρ
, (5)

as the “equation of motion” for a star – the description of how the a spherical
shell of material would move around. We can rewrite r̈ as v̇. For a steady flow,
∂v
∂t

= 0, so v̇ = v dv
dr
, so we can express the velocity derivative as:

v
dv

dr
= −

1

ρ

dP

dr
−

GM

r2
. (6)

This equation can still be thought of as an expression of conservation of
momentum – it’s just that now it’s conservation of momentum per unit mass.

Energy conservation

We can now look at how to treat energy conservation in this context.

u̇+ P
˙(

1

ρ

)

= q −
∂F

∂m
(7)

gives the general form of conservation of energy that we considered in Chap-
ter 2. This has two quantities with time derivatives, so we will have to consider
them separately.

u̇ =
∂u

∂t
+ v

∂u

∂r
(8)

expresses the internal energy term, and

P
˙(

1

ρ

)

= P

[

∂

∂t

(

1

ρ

)

+ v
∂

∂r

(

1

ρ

)]

(9)

Next, in the regions where a wind is being ejected from a star, it is safe
to assume that there is no nuclear energy generation. Also, we have previously
considered the flux gradient with respect to mass; we must re-write this in terms
of radius as 1

4πr2ρ
∂F
∂r

. We then get:

∂u

∂t
+ v

∂u

∂r
+ P

[

∂

∂t

(

1

ρ

)

+ v
∂

∂r

(

1

ρ

)]

= −
1

4πr2ρ

∂F

∂r
, (10)

and for a steady flow, the explicity time derivatives will go to zero, so that:

v
∂u

∂r
+ Pv

∂

∂r

(

1

ρ

)

= −
1

4πr2ρ

∂F

∂r
. (11)
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Developing simple relations

Now, if we take the momentum equation and multiply through by the ve-
locity (which gives it units of energy) we can then add that equation to the
energy equation above. Then we apply three simple algebra tricks – setting

v dv
dr

= d
dr
( 1
2
r2); GM

r2
= − d

dr

(

GM
r

)

, and 1

ρ
dP
dr

+ P d
dr

(

1

ρ

)

= d
dr

(

P
ρ

)

.

Then with a little more rearrangement, we can get:

Ṁ

(

1

2
v2 + u+

P

ρ
−

GM

r

)

+ F = constant (12)

This is all to say that we conserve all the different kinds of energy flow in the
wind – bulk kinetic energy flow, internal energy flow, rate of work done against
ambient gas pressure, rate of work done against gravity, and rate of photon
energy flow.

Summary of qualitative ideas

So some key ideas to take away from all the mathematics here are that (1)
energy can be conserved even in a fluid flow, where the properties of the fluid are
changing with radius – it’s just a bit more complicated to account for everything
than it is for a static star and (2) we can look now at some of the tradeoffs among
the different forms of power that can be in the wind to understand some of their
properties.

Energetics of wind: where does the speed come from?

One of the things we want to think about is how the winds are accelerated.
Observationally, a few things tend to be true most of the time: the outer parts
of the stellar wind are faster than the inner parts; the winds are “overpressured”
relative to the interstellar medium; and the winds are hot. There are exceptions
to these statements, but they are usually true.

The finding that the winds are accelerating as they move outwards might
be a bit of a surprise to many students. The two most obvious sources of force,
gravity and external pressure, should work to slow the winds down, not to speed
them up. The internal energy will not be useful for accelerating the wind, even
if it can be reduced, because there isn’t net momentum available in random
motions. The answer then, is that the radiation pressure from the star exerts a
force on the gas in the wind and that force is stronger than the forces slowing
down the winds, at least until the wind gets far from the star.

Let’s do a quick energetic calculation to see if we can pump bulk kinetic
energy into a stellar wind in a manner that will power its wind. A relatively
extreme case for having a strong wind is that of a 30 M⊙ star with Ṁ =
10−6M⊙/yr and v = 1000 km/sec.

First, let’s look at the radiative luminosity of the star. For massive stars,
L ∝ M3, so let’s take the luminosity to be about 303L⊙ = 2.7 × 104L⊙, or
about 1031W.

Next, let’s look at the kinetic power of the wind. M⊙ = 2 × 1030 kg, so
Ṁ = 2 × 1024 kg/yr, or about 7 × 1016 kg/sec. Then 1

2
Ṁv2 will be about

4× 1028W – less than 1% of the radiative power. We can turn a small amount
of the light from the star into a stellar wind that qualifies as one of the most
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powerful kinetic outflows in the Universe. We should also remember here that
since the light from the star will mostly pass through its Galaxy out into the
larger Universe, and the wind will interact with other gas in the Galaxy and
blow out bubbles that the consequences of the wind are quite important even
though they represent a small fraction of the total power.

Let’s also look at the total mass loss here: The nuclear timescale for the star
will be about (30−2)(1010) years, or 10 million years. Over that time, we can
expect the star to lose about 1/3 of its mass.

Phenomenology of how winds are accelerated

So, now let us go a bit beyond just energetic arguments and figure out
how the winds are really accelerated. It is often assumed (and often found
to be a reasonably good approximation) that the winds from a star have a
uniform temperature. That temperature is surprisingly high compared to the
temperature of the outer part of the star. Temperature is directly related to
the sound speed in a gas, vs = RT

µ
, where R here is the gas constant, not the

radius. This speed will also be essentially the same as the escape speed from
the place where the wind is launched, which will be near the stellar surface. For
main sequence stars, this will be several hundred kilometers per second.

For some stars, almost no particles get to this speed – it corresponds to a
temperature of about a million degrees! In the Sun, there would be essentially
no gas at this speed, if not for magnetic heating in the Sun’s corona – and even
then, the solar wind isn’t very important for understanding the evolution of the
Sun.

For other stars, winds can strongly influence the evolution of the star, and
take away a large fraction of the stellar mass. How can they work?!?

The answer is radiation pressure.
The Eddington limit, which we derived several chapters ago, can be ex-

pressed as:

κL < 4πcGM (13)

where the quantities are given for the star as a whole.
We need to remember here that in a lot of cases, the opacity can be much

larger than just the electron scattering opacity. In particular, it is generally
thought that most strong stellar winds are driven by radiation pressure on metal
lines, unless the stars are so highly ionized that there are essentially no metals
left. Since metal lines absorb photons rather than merely scattering them, a
large fraction of the momentum of the absorbed photon can be transferred to
the atom.

Let’s look at the roughl scaling of the stellar wind’s properties with other
things. Suppose that the wind absorbs a fraction φ′ of the photon momentum
and the wind travels at vesc, the escape velocity of the star. Then:

Ṁδtvesc = φ′
L

c
δt. (14)

That is, the momentum taken on by the stellar wind per unit time to accelerate
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it up to vesc is equal to the momentum absorbed by the stellar wind from the
photons.

Now, we can also set vesc =
√

2GM
R

, and φ = φ′/2, and get:

Ṁ =
(

φ
vesc
c

) LR

GM
(15)

The term inside parenthesis cannot be estimated accurately in a simple way,
because as the wind absorbs light, it can become less ionized, and it is generally
estimated from observations instead.
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