‘Little Bang’
The first 3 weeks ...

- Heavy Ion Physics at LHC
- First look at Pb-Pb
 - Final (published) results
 - Ongoing Analysis
Matter under Extreme Conditions

- ‘state of matter’ at high temperature & energy density: ‘The QGP’
 - ground state of QCD & primordial matter of the Universe
 - partons are **deconfined** (not bound into composite particles)
 - **chiral symmetry** is restored (partons are ~ massless)
 - ‘the stuff at high T where ordinary hadrons are no longer the relevant d.o.f’

- **Mission of URHI**
 - **search** for the QGP phase
 - **measure** its properties
 - **discover** new aspects of QCD in the strongly coupled regime

Physics is QCD:
strong interaction sector of the Standard Model
(where its strong !)
Role of LHC after RHIC/SPS

- **Search** for the ‘QGP’ is essentially over
- **Discovery** of QGP is well under way (with fantastic results & surprises at RHIC)
- **Measuring** QGP parameters has just begun

- **1) Quantitative differences**
 - significantly different state of QGP in terms of energy density, lifetime, volume
 - large rate for ‘hard probes’: jets, heavy quark states (b,c,γ, J/Ψ),…

- **2) Test & validate** the HI ‘Standard Model’ (< 10 years old!)
 - QGP: very strongly interacting (almost) perfect liquid
 - Test predictions/extrapolations from RHIC to LHC
 - example: flow ('soft')
 - Quarkonia suppression ('hard')

- **3) ‘Precision’ measurements of QGP parameters**
 - Quantitative and systematic study of the new state of matter
 - **Equation-of-State** f(ε,p,T), **viscosity** η (flow), **transport coefficient** q (jet quenching), Debye screening mass (Quarkonia suppression), …
 - Confront data with Theory and Models:
 - **standard tools**: Lattice QCD, pQCD, Thermo- and Hydrodynamics, …
 - **new tools**: AdS/CFT (‘duality’), Classical QFT (‘Colour Glass Condensate’)

- **4) Surprises?**
 - we are dealing with QCD in the strong coupling limit!
‘Jet Quenching’

Jet quenching: jet E -> jet E' ($=E-\Delta E$) + soft gluons (ΔE)

modified jet fragmentation function via matter induced gluon radiation/scattering

\Rightarrow QGP properties

\Rightarrow how much energy is lost? (measures e.g. q^\perp)

- most difficult question, may depend on jet cone R, p_t-cutoff, ..

\Rightarrow how is it lost? (e.g. multiple soft or few hard gluons ?)

- look at soft part of $f(z)$, $p_t < 2-5$ GeV

\Rightarrow ‘response of QGP’ (shock waves, Mach cones ??)

- properties of bulk matter around jet, $p_t \sim 1$ GeV
Charged Jets

- Jets in ALICE (TPC)
 - we see qualitatively a similar effect
 - quantitative analysis is ongoing
 - small acceptance (statistics), => need full 2010 data
 - try to include low p_t (study p_t-cut off dependence of imbalance)
‘Jet Quenching’ as seen by p_t spectra

- Suppression of high p_t particles (\sim leading jet fragments)
 - Minimum \(R_{AA} \sim 1.5 - 2 \times \) smaller than at RHIC
 - Rising with p_t! (ambiguous at RHIC!)
 - Accuracy limited by pp reference
 \Rightarrow need pp at 2.76 TeV!

\[
R_{AA}(p_T) = \frac{1}{N_{\text{ev}}^{AA}} \frac{d^2N_{\text{ch}}^{AA}/d\eta dp_T}{\langle N_{\text{coll}} \rangle \frac{1}{N_{\text{ev}}^{pp}} \frac{d^2N_{\text{ch}}^{pp}/d\eta dp_T}{}}
\]

Data driven Interpolation
900 GeV & 7 TeV
or using NLO for change in shape
7 TeV * NLO (2.76 TeV)/NLO(7 TeV)

Including CDF data
0.9 TeV * NLO (2.76 TeV)/NLO(0.9 TeV)

Paper to be submitted today
High p_T Particle Correlations

Trigger Particle: highest p_T particle in event (p_{Tt})
Associate Particle: all the others (p_{Ta})
Jet Quenching seen by High p_T Correlations

- classic ‘jet quenching signal’
 - away side correlation in central Pb-Pb washed out up to $p_{T,\text{trig}} > 10$ GeV

P_T associated $2 - 6$ GeV

$p+p$ (7 TeV)
- ‘near’ side
- ‘away’ side

Star@RHIC
$p_{T,\text{trig}}$ 8-15 GeV
Jet Quenching (?) seen via Multiparticle Correlations

- "Autocorrelation":
 \[\frac{d^2N_{ch}}{d\Delta\eta d\Delta\phi} (\text{signal})/ \frac{d^2N_{ch}}{d\Delta\eta d\Delta\phi} (\text{mixed events}) \]

- **pp 51-140**
- **Pb 80-90%**
- \(p_T > 1.5 \text{ GeV/c} \)

- **PbPb peripheral**
- **PbPb central**

- **'near side ridge':**
 - striking effect, not really understood
 - response of QGP to jet quenching?
 - initial state gluon radiation?
 - ???

- **same/mixed a.u.**

- **00-05%**
 - \(p_T > 1.5 \text{ GeV/c} \)
Role of LHC after RHIC/SPS

1) **Quantitative differences**
 - significantly different state of QGP in terms of energy density, lifetime, volume
 - large rate for ‘hard probes’: jets, heavy quark states (b,c,Y,J/Ψ),…

2) **Test & validate** the HI ‘Standard Model’

3) **‘Precision’ measurements** of QGP parameters

4) **Surprises?**
1) What’s the Difference?

- **Multiplicity and Energy density ε:**
 - $dN_{ch}/d\eta \sim 1600 \pm 76$ (syst)
 - sometewh on high side of expectations
 - growth with \sqrt{s} faster in AA than pp (\sqrt{s} dependent ‘nuclear amplification’)

- **Energy density $\approx 3 \times$ RHIC (fixed τ)**
 - lower limit, likely τ_0(LHC) $< \tau_0$(RHIC)

Who gets it right and why?

- \(\frac{dN_{ch}}{d\eta}\) as function of centrality (normalised to \('overlap volume' ~ N_{\text{participants}}\))
 - soft process: \(\frac{dN_{ch}}{d\eta} \sim \) number of scattered nucleons (strings, participants, ...)
 - ‘nuclear amplification’ should be energy independent
 - (very) hard processes: \(\frac{dN_{ch}}{d\eta} \sim \) number of nucleon-nucleon collisions
 - getting more important with \(\sqrt{s}\) & with centrality

- DPMJET MC
 - gets it right for the wrong reason

- HIJING MC
 - strong centr. dependent gluon shadowing

- Others
 - saturation models:
 - Color Glass Condensate, ‘geometrical scaling’ from HERA/ photonuclear react.

Important constraint for models sensitive to details of saturation
What’s the Difference?

- **Volume and lifetime:**
 - Identical particle interferometry (HBT, Bose-Einstein correlations)
 - QM enhancement of identical Bosons at small momentum difference
 - measures Space-Time evolution of the ‘dense matter’ system in heavy ions coll.
 - **Volume** ≈ 2 x RHIC (≈ 300 fm³)
 - ‘comoving’ volume!
 - **Lifetime** ≈ +20% (≈ 10 fm/c)

\[(E, \vec{p}) \rightarrow (\tau, \vec{X}) \]

Preliminary: Under Collaboration Review

- ‘Volume’ at decoupling
- ‘Lifetime’: from collision to ‘freeze-out’ (hadron decoupling)

Alice error: stat + syst

Much more information from HBT about the Space-Time evolution available.
Role of LHC after RHIC/SPS

1) **Quantitative differences**

2) **Test & validate** the HI ‘Standard Model’
 - QGP = very strongly interacting (almost) perfect liquid
 - Test predictions/extrapolations from RHIC to LHC
 - examples: flow (‘soft’) **Quarkonia suppression** (‘hard’)

3) ‘**Precision**’ measurements of QGP parameters

4) **Surprises**?
2) Testing the HI ‘Standard Model’

- Elliptic Flow: one of the most anticipated answers from LHC
 - **experimental observation**: particles are distributed with azimuthally anisotropic around the scattering plane
 - **Are we sure Hydro interpretation is correct?**

Elliptic Flow v_2 as interpreted by *Hydrodynamics*

- Pressure gradient converts spatial anisotropy \rightarrow momentum anisotropy
- \rightarrow particle yield anisotropy
Testing the HI ‘Standard Model’

- Hydro seems to work very well for first time at RHIC
 - LHC prediction: modest rise (Depending on EoS, viscosity, speed of sound, dN_{ch}/dη, ..)
 - ‘better than ideal is impossible’
 - experimental trend & scaling predicts large increase of flow
 - ‘RHIC = Hydro is just a chance coincidence’

BNL Press release, April 18, 2005:
Data = ideal Hydro
"Perfect" Liquid
New state of matter more remarkable than predicted – raising many new questions

LHC will either
confirm the RHIC interpretation
(and measure parameters of the QGP EoS)

OR

Multiplicity ?????????????
First Elliptic Flow Measurement at LHC

- v_2 as function of p_t
 - practically no change with energy!
 - extends towards larger centrality/higher p_t?

- v_2 integrated over p_t
 - 30% increase from RHIC
 - $<p_t>$ increases with \sqrt{s}
 - pQCD powerlaw tail?
 - Hydro predicts increased ‘radial flow’
 - very characteristic p_t and mass dependence; to be confirmed!

17 Nov: arXiv:1011.3914, acc. PRL

STAR at RHIC

ALICE

RHIC

+30%
Testing the HI ‘Standard Model’

- Hydro passed the first test!
 - many more tests of Hydro and the HI-SM to come….

CERN Press release, November 26, 2010:
‘confirms that the much hotter plasma produced at the LHC behaves as a very low viscosity liquid (a perfect fluid).’
Testing Quarkonia Suppression

- Interpretation of SPS & RHIC results ambiguous
 - HI–SM: $J/\Psi (Y', Y'')$ suppression stronger at LHC, Y suppression depends on T
 - extension to HISM: J/Ψ enhancement, Y', Y'' suppression
 - recombination of charm pairs to J/Ψ may mask suppression at RHIC

- Partial answer expected from this years data
 - normalisation (measured/expected) ongoing
 - Y family will need integrated $L \sim 1-2$ nb$^{-1}$

\[M_{\mu\mu} \text{ (GeV/c}^2\text{)} \]

\[\text{Events/0.05 GeV/c}^2 \]

\[N_{Y'} = 479 \pm 82 \]
\[m_{J/\Psi} = 3.088 \pm 0.015 \text{ GeV/c}^2 \]
\[\sigma_{J/\Psi} = 0.084 \pm 0.013 \text{ GeV/c}^2 \]

Pb-Pb Min. Bias
fraction of data
expect few 1000 J/Ψ
total by end 2010
Role of LHC after RHIC/SPS

1) Quantitative differences

2) Test & validate the HI ‘Standard Model’

3) ‘Precision’ measurements of QGP parameters
 - Quantitative and systematic study of the new state of matter
 - Equation-of-State $f(\varepsilon, p, T)$, viscosity η (flow), transport coefficient q (jet quenching), Debye screening mass (Quarkonia suppression), …
 - Confront with Theory and Models:
 - standard tools: Lattice QCD, pQCD, Thermo- and Hydrodynamics, …
 - new tools: AdS/CFT (‘duality’), Classical QFT (‘Colour Glass Condensate’)

4) Surprises ?

Precision measurements are still a long way ahead, but it looks like we will get there!
3) Towards Precision Measurements

- **Sensitivity to fluid viscosity η**
 - Quantitative results will need much more time and more experimental input …
 - elliptic flow with identified particles, radial flow ('radial expansion'),
 better determination of initial geometry, …

![Graph showing v_2 vs. centrality percentile]

AdS/CFT limit: η/Entropy = $1/4\pi$
Strangeness in Pb-Pb

\[K_S^0 \]

ALICE Performance
01/12/2010

\[\Lambda \]

ALICE Performance
01/12/2010

Mass: 1.672 GeV
\[\sigma = 0.003 \text{ GeV} \]

ALICE Performance
29.11.2010
PbPb at 2.76 TeV

Mass: 1.322 GeV
\[\sigma = 0.002 \text{ GeV} \]
Charm in Pb-Pb

‘Jet quenching’ with heavy quarks:
Energy loss depends on
- color charge (quark/gluon)
- mass (light/heavy quarks)
Anti-Nuclei

PbPb @ $\sqrt{s_{NN}} = 2.76$ TeV

dE/dx signal in TPC (a.u.)

Rigidity $\frac{p}{Z}$ (GeV/c)

~ 2 M Pb-Pb Min Bias events
‘Single Events’

- ‘Properties of average events instead of average event properties’

- \(v_2 = 0.070566 \)
Summary

- LHC is a fantastic ‘Big Bang’ machine
 - even for LHC standards, speed and quality of ion run is outstanding
 - unprecedented powerful and complementary set of detectors
 - physics looks to be even more interesting than anticipated

While waiting for Mr. Higgs and Ms. Susy, there is plenty of exciting physics (and fun) exploring QCD in a new domain, where the strong interaction is really strong!

- Looking forward to the ‘terra incognita’ of HI at LHC

Big THANKS to the CERN crew from ion source all the way to LHC

Hic sunt Leones!