

TTU's Contributions to CMS

Part.2: New Physics Searches & MET.

Sung-Won Lee Texas Tech University

Jet Validation I

We regularly run our jet validation code on prerelease RelVal samples

- For FullSim vs FastSim comparisons, we use Flat p_T =15-3000 GeV sample.
- Allow use to explore the wide range in jet p_T

The results are posted to: http://highenergy.phys.ttu.edu/~keng/validation/More recently, Pileup MC Validation & Collision data vs MC

Jet Algorithms

- □lcone5 Calo-jets
- □Icone5 JPT-jets
- □lcone5 PF-jets
- □KT4, KT6 Calo-jets
- □Anti-KT Calo-jets
- □Anti-KT JPT-jets
- □Anti-KT PF-Jets

Observables

- \Box Jet p_T scale [p_T(calo)/p_T(true)]
- □ Jet E, p, p_T, mass, eta, phi, # of constituents distribution etc
- □ Energy in EB, EE, HB, HE, HF, HO
- □ Simple but comprehensive set for validation.
- □ 2010 Summer: Chiyoung → Keng

Jet Validation II

MC with PU vs MC without PU: Jets in float MC samples

Jet Energy Scale

- The correct JES for tagging quarks in the qqH could only be estimated correctly using a quark-rich sample.
- Instead of using γ +jet events (good for central jet) for corrections,
- Z(→ II)+jet, can be used; almost background free and the ratio of quark and gluon jets is well known from the theoretical predictions.

The QJE give the best calibration for reconstructing hadronic W boson

MET in Photon + Jet Events

Goal: To evaluate the CMS MET performance with data

- ☐ events with no intrinsic MET
- □ cross-section larger than that of Z
- □ induce MET by removing deposit in calorimeter from photon
- magnitude of induced MET well known.
- □ several MET algorithms are tested on data & compared with the prediction from the simulation.
- *** Currently, preparing a publication to JINST (J.Damgov)

The hadronic recoil can be projected onto photon axis(q_T), yielding two components, parallel ($u_{||}$) and perpendicular (u_T) to the event axis.

 $|u_{||}|/q_T$ measures the scale factor of the MET, while u_T is dominated by the underlying event and calorimeter noise.

MET Scale Validation

- □ Good agreement between data and MC prediction
- □ Type II correction greatly improves the missing ET scale.
- □ Presence of pileup doesn't affect the missing ET scale.
- ☐ More advanced algorithms (like pfMET) have already scale closer to 1
- □ Type I/II corrections to pfMET offers additional improvement.

MET Resolution

- □ MET resolution is improved for the algorithms, which use the tracking info.
- □ MET resolution is sensitive to the number of PU events. PU contribution to the resolution is well parameterized as a function of the number of PU events.

Search for Dijet Resonances in 7 TeV

PRL 105, 211801 (2010), 11/19/2010

We have measured, in 2.9pb⁻¹ of data, the dijet mass differential cross section for $|\eta_1,\eta_2|$ <2.5 and $|\Delta\eta_2|$ <1.3. The distribution is sensitive to the coupling of any new massive object to quarks and gluons.

*** The first of the "new physics" search paper produced from the CMS

No new physics yet, set 95% C.L. mass limits for new particles decaying to parton pairs: String resonances >2.5TeV; Excited quarks >1.58TeV: "the world's most stringent limits"

Dijet Mass Search, Status & Plans

Highest Mass Dijet Event: 2.6 TeV

Status & Plans

- updating analysis on a weekly basis.
- Moving to next publication with full statistics, better statistical methods & (possibly) adding PF

Also, contributed to Dijet centrality ratio analysis recently, accepted by PRL in Nov.

Hadronic W Decays in Jet+MET

Experimental question leads to detection of the SM W bosons in the Jets+MET final state. We developed a data-driven method to extract hadronic W decays in the Jets+MET final state to characterize the signals (ttbar, SUSY) @ LHC.

Idea:

- ① mix jets from different events to estimate the W combinatorial background shape.
- 2 get the normalization from the tail for subtraction

 $\frac{\int_{300}^{500} M_{\rm jj}^{\rm same} dM}{\int_{300}^{500} M_{\rm jj}^{\rm mix} dM}$

This method is used to reconstruct **M**(jj) on the **ttbar** and **SUSY** samples

$$\begin{array}{cccc}
p\overline{p} \to t \, \overline{t} \to (W^+b) & (W^-\overline{b}) \\
& & \downarrow jj & \downarrow l^+\nu \\
\widetilde{g} \to t \, \overline{t} \, \widetilde{\chi}_2^0 \to (W^+b)(W^-\overline{b})(\ell^+\ell^-\widetilde{\chi}_1^0)
\end{array}$$

Test on SM (ttbar) & SUSY

Hadronic W Decays in Jet+MET

Experimental question leads to detection of the SM W bosons in the Jets+MET final state. We developed a data-driven method to extract hadronic W decays in the Jets+MET final state to characterize the signals (ttbar, SUSY) @ LHC.

Idea:

- mix jets from different events to estimate the W combinatorial background shape.
- 2 get the normalization from the tail for subtraction

This method is used to reconstruct **M**(jj) on the **ttbar** and **SUSY** samples

Test on LHC Collision Data

TTU Contribution to CIVIS Part.2 Summary

- TTU contributions cover many aspects of Jet/MET & BSM physics (coherent effort)
 - Jet
 - provided steady contributions to the Jet DQM & Validation
 - developed the method to determine a new Jet Energy Scale
 - MET
 - important/major contribution to the MET performances
 - Major contributor to MET JINIST paper, to be submitted soon
 - BSM Physics
 - Leadership role (Exotica-Multijet co-convener)
 - main contributor to the dijet resonance analysis (PRL 105)
 - developed data-driven method to reconstruct hadronic W (for SUSY/EW/Top)
- Results presented at major conferences (PLHC, ICHEP, HCP, SUSY)
- Work shown here (already) published or to be submitted for publication