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We describe a simple technique for optimizing the extraction of the forward-backward asymmetry (Afb) of
Drell-Yan lepton pairs (e+e−, µ+µ−) produced in p̄p and pp collisions at hadron colliders. The method employs
simple event weights which are functions of the rapidity and cosθ decay angle of the lepton pair. It yields the best
estimate of the acceptance corrected parton level (q̄q) forward backward asymmetry as a function of final state
dilepton mass (M``). Typically, when compared to the simple count method, the technique reduces the statistical
errors by 20% for p̄p, and 40% for pp collisions, respectively. In p̄p and pp collisions with M``> 300 GeV/c2

this new technique can be used to search for new high mass and large width Z’ bosons which may be best
detected through the observation of deviations from the Standard Model expectation for the forward-backward
asymmetry. In pp collisions with M``< 300 GeV c2, this technique can be used to provide additional constraints
on the antiquark distributions in the proton.

1. Introduction

The Drell-Yan process in which qq̄ annihila-
tions form intermediate γ∗ or Z (γ∗/Z) vector
bosons decaying to lepton (e+e−, µ+µ−) pairs is
particularly useful in searching for new interac-
tions at large momentum transfers ( Q2 = M2

``,
where M`` is the invariant mass of the lepton
pair). In leading order (LO) approximation, the
momentum fractions x1, x2 carried by the initial
state quarks and antiquarks in the proton and an-
tiproton/proton, respectively, are related to the
rapidity y [1] of the γ∗/Z boson via the equation
x1,2 = (M``/

√
s)e±y, where

√
s is the center of

mass energy. Dilepton pairs produced at large
y originate from collisions in which one parton
carries a large and the other a small momentum
fraction x.

Drell-Yan lepton pairs which are produced in qq̄
annihilations display a forward- backward asym-
metry because of the interference between photon
and Z boson exchange[2]. This forward-backward
asymmetry would be modified by new resonances
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(e.g. additional heavier Z ′ bosons[2]) or new in-
teractions at large mass scales.

Although the mass limits from Tevartron (p̄p)
experiments CDF [3] and and DO/ [4] for a va-
riety of Z ′ models are in the 1 TeV/c2 range,
the limits are much lower if the Z ′ width (typi-
cally ΓZ′ ≈ 0.01 ·MZ′) is increased to account for
the possibility of additional decays modes to ex-
otic fermions (which are predicted in E6 models
[5]), and/or supersymmetric particles. The limits
are even lower if one includes the possibility of a
more general model with enhanced couplings to
the third generation.

Such a Z ′ (which has larger width e.g. ΓZ′ =
0.1MZ′) would produce only a small signal in the
dilepton mass spectrum because the total cross
section is proportional to the square of the am-
plitude. However, the change in the forward -
backward asymmetry which results from the in-
terference with the standard model process is lin-
early proportional to the amplitude and would
be observable as a change in the forward back-
ward asymmetry. This change will occur around
the mass of the Z ′ boson, and also in some
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mass range below and above the mass of the
Z ′ boson[6]. This point is illustrated in Figure

Figure 1. Early Tevatron data (120 pb−1).

1 which is taken from Reference[6]. The figure
compares early (120 pb−1) high mass Drell-Yan
dσ/dM`` data from CDF and DO, and early AFB
data from CDF to Standard Model theoretical
predictions and (as an example) to a prediction
with an extra E6 boson with MZ′ = 350 GeV/c2

and ΓZ′ = 0.1MZ′ , for φ = 600 (solid) and
φ = 1730 (dotted). As can be seen for this

case, the signal in Afb is larger than the signal
in dσ/dM``. Since such new particles or new in-
teractions may be best detected through the ob-
servation of deviations from the Standard Model
expectation for forward-backward asymmetry, it
is useful to devise experimental technique to mea-
sure the forward-backward asymmetry (Afb) with
the best possible precision. Since fine mass bins
(≈ 25GeV/c2) are required, the number of events
per bin at large M`` is small and the measure-
ments are statistically limited.

In this communication we describe a sim-
ple technique for optimizing the extraction of
the forward-backward asymmetry. The method
works very well for both large and small statis-
tical samples. The method employs simple event
weights which are functions of the rapidity and
cosθ decay angle of the lepton pair.

The new method yields the smallest statistical
uncertainty in the measurement of the forward
backward asymmetry as a function of M``. It
can be directly applied to current p̄p data at the
Fermilab Tevatron, as well as new data that will
be collected in pp collisions at the Large Hadron
Collider (LHC).

2. qq̄ annihilations

The differential cross-section for the parton
level process for qq̄ annihilation can be written
as

dσ

d(cosθ)
= A(1 + cos2θ + q(]θ)) +Bcosθ (1)

q(θ) =
1
2
C1(M``, PT , y)(1− 3cos2θ) (2)

where θ is the emission angle of the positive lep-
ton relative to the quark momentum in the center
of mass frame, and A and B are parameters that
depend on the weak isospin and charge of the in-
coming fermions. The qq̄ center of mass frame is
well defined when the lepton pair has zero trans-
verse momentum (PT ). For a non-zero transverse
momentum of the dilepton pair, the qq̄ center of
mass frame is approximated by the Collins-Soper
frame[7].

The term q(θ,M``, PT , y) is a small QCD cor-
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rection term[7] which is zero when the transverse
momentum of the dilepton pair is zero. In gen-
eral it is a function of the dilepton mass (M``),
transverse momentum (PT ), and rapidity (the ra-
pidity dependence is weak). The q(θ,M``PT , y)
term integrates to zero when the cross section is
integrated over all cos2θ.

In equation 2, the parameter C1 = 0 for
PT=0 and increases with transverse momen-
tum. In our calculations we will use C1 = 0
(e.g. PT=0 ). In order to include the de-
pendence on the q(θ,M``, PT , y) term, we either
parametrize C1 from a Monte Carlo simulation
such as PYTHIA[8], or account for it in the ac-
ceptance/modeling correction.

For example, using PYTHIA we find that in the
production of Z bosons at the Tevatron C1 ≈ 0.25
for PT=45GeV/c, and increases to C1 ≈ 0.65 for
PT=120 GeV/c. For entire sample of Z boson
production at the Tevatron the average value of
C1 is about 0.063. In general QCD corrections
to the B parameter are small. We can either as-
sume that C1 = 0, or or C1 is equal to its average
value, or parametrize the approximate linear de-
pendence for C1 on PT as function of dilepton
mass. We can then rely on Monte Carlo accep-
tance/modeling corrections to account for the re-
maining higher order small QCD corrections to
the angular distribution that has been assumed
in the analysis.

The cross sections for forward (for−) events
(σF ) and backward (back−) events (σB) are given
by

σf =
∫ 1

0

dσ

d(cosθ)
d(cosθ) (3)

= A

(
1 +

1
3

)
+B

(
1
2

)
σb =

∫ 0

−1

dσ

d(cosθ)
d(cosθ) (4)

= A

(
1 +

1
3

)
−B

(
1
2

)
The electroweak interaction introduces the

asymmetry (a linear dependence on cosθ), which
can be expressed as

Atotalfb =
σf − σb
σb + σb

=
3B
8A

(5)

For p̄p collisions (e.g. at the Tevatron), the
direction of the quark is predominately in the
proton direction, and the direction of the anti-
quark is predominately in the antiproton direc-
tion. Therefore, the forward backward asymme-
try for qq̄ processes is easy to measure in p̄p col-
lisions.

If Nf is in number of events in the forward
direction of the quark and Nb is the number of
events in the backward direction of the quark we
obtain the following expression for the total for-
ward backward-asymmetry (Atotalfb ) and its error
( ∆Atotalfb ):

[Afb]
total =

Nf −Nb
Nf +Nb

=
Nf −Nb

N
(6)

Nf
Nb

=
1−Atotalfb

1 +Atotalfb

Nf =
1 +Atotalfb

2
N

Nb =
1−Atotalfb

2
N

∆Atotalfb =
2
N

[
NfNb
N

]1/2

∆Atotalfb =

[
1− (Atotalfb(expected))

2

N

]1/2

(7)

where we have used ∆Nf = (Nf )1/2 and
∆Nb = (Nb)1/2, and N = Nf + Nb. Since
for Poisson statistics[10], the fractional error is
(1/Nexpected)1/2 and not (1/Nobserved)1/2 , we use
Afb(expected) in equation 7. For p̄p collisions above
the Z mass peak, Afb(expected)=0.6. In this re-
gion, ∆Afb = 0.800 · (1/N)1/2.

Therefore, a measurement with 100 events
yields a statistical error of 0.08. This level of pre-
cision is needed to observed the deviation from
the Standard Model for the Z ′ example shown
in figure 1. Later in this paper we show that a
a reduction in the error (of about 20%) can be
obtained by using the information in the angular
distribution of the forward and backward events.
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In the next section we discuss the measurement
of the forward-backward asymmetry in pp colli-
sions (e.g. at the Large Hadron Collider).

3. Misidentification of the quark direction
in pp collisions

For p̄p collisions the direction of the quark
is primarily along the direction of the proton.
However, there is a a small probability for a
misidentification (misID) that originates from
the charge misidentification probability in the
tracker. There is an additional small misID that
comes from the small fraction of events in which
a sea antiquark in the proton interacts with a
sea quark in the antiproton. This misID is very
small for large dilepton final state mass.

Although pp collisions are symmetric, there is
still a forward backward asymmetry if the quark
direction is defined to be the direction of motion
of the Derll-Yan pair. This arise from the fact
that on average, quarks carry a larger fraction of
the momentum than antiquarks. However, there
is a significant misID that originates from the
fraction of events for which the antiquark carries a
larger fraction of the momentum than the quark.
This misID dilutes the observed asymmetry.

In most theoretical studies of the production of
new Z ′ bosons in pp collisions at the LHC, this
dilution is included in calculation for the predic-
tion for the observed forward-backward asymme-
try. Here, we show that we can obtain a higher
sensitivity to new particle searches by correcting
the data for the misID fraction on an event by
event basis.

At small rapidity the misidentification proba-
bility wi is large (0.5 at y = 0). At large rapidity
the misidentification probability wi is small. We
show below that by taking this information into
account we can reduce the error on the extracted
qq̄ asymmetry.

4. Correcting for misID in pp collisions

We illustrate this point for the case of a
high statistics measurement of the forward back-
ward asymmetry in a specific mass bin (e.g
300 GeV/c2).

We first extract the qq̄ asymmetry by cor-
recting the measured asymmetry for the average
misID probability ( this commonly used method
is called the event count method).

We then show that we reduce the error on the
extracted quark-antquark asymmetry by binning
the data in ten rapidity bins and fitting for the
weighted average of the extracted parton level
asymmetries from all of the ten rapidity bins.

Then we derive an event weighting technique
that is equivalent to the fit method in the high
statistics case, but which can also be used in the
limit of very small statistical samples.

We first define the misID probability (wi) for
each yi bin

x1(2) =
M``√
s
× e+(−)yi (8)

wi ≈
∑
flavor vq{q(x2) · q̄(x1)}∑

flavor vq{q(x2) · q̄(x1) + q(x1) · q̄(x2)}
(9)

Where M`` is the dilepton mass (Mµµ or Mee),
and yi is the rapidity of the dilepton pair. Here
q(x) denotes the quark distributions (u(x), d(x) ,
s(x) , c(x), b(x)) and q̄(x) denotes the antiquark
distributions (ū(x), d̄(x), s̄(x), c̄(x), b̄(x)) for the
various flavors in the nucleon. The parameter vq
denotes the Z/γ couplings of to each flavor (which
a function of the dilepton mass). At large M`` the
ū(x) and u(x) quark distributions dominate the
expression for the dilution factor.

Note that the misID in the forward-backward
asymmetry should include the interference be-
tween photon and Z boson exchange for each
quark flavor, which is a more complicated func-
tion of the couplings in general. In addition, the
misIDis affected by radiative emission of pho-
tons and detector resolution. Therefore, it is
best to use a Monte Carlo generator (such as
PYTHIA[8] or ZGRAD2[9]) to empirically de-
termine the functional dependence of the dilu-
tion factor wi as a function of y``,measured and
M``,measured.

wi = f(y``,measured,M``,measured). (10)

We now proceed to correct for the misID and
extract the qq̄ forward-backward asymmetry for
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each one of the ten yi rapidity bins. In the ex-
pressions below, nf,i and nb,i are the defined as
the measured (i.e. diluted) number of forward
events and backward events in each bin, and Nf,i
and Nb,i are defined as the number of true for-
ward and true backward events (for qq̄ collisions)
in the bin.

For a given yi rapidity bin with a misidentifica-
tion probability wi the measured and true num-
ber of forward and backward events are related
by the following expressions .

nf,i = Nf,i(1− wi) +Nb,i(wi) (11)
nb,i = Nb,i(1− wi) +Nf,i(wi)
Nf,i = nf,i(1− wi)/Li − nb,i(wi)/Li
Nb,i = nb,i(1− wi)/Li − nf,i(wi)/Li

where Li = (1 − 2wi) is defined as the dilu-
tion factor. For this yi rapidity bin, the corrected
parton level asymmetry is given by

Atotalfb =
Nf,i −Nb,i
Nf,i +Nb,i

(12)

Nf,i −Nb,i = nf,i/Li − nb,i/Li
Nf,i +Nb,i = nf,i + nb,i = ni

which yields

Atotalfb,i =
1
Li

nf,i − nb,i
ni

(13)

[
∆Atotalfb−i

]
=

1
Li

2
ni

[
nfnb,i
ni

]1/2

(14)

where we have used ∆nf,i = (nf,i)1/2 and
∆nb,i = (nb,i)1/2.

We find that a measurement of the qq̄ asymme-
try in the case where there is misID probability
of wi results in an increase of the error in the
extracted parton level asymmetry by a factor of
1/Li (which is equivalent to reducing the number
of events by a factor of L2

i = (1− 2wi)2).
If we want to combine different yi bins together,

we need to weight the events by the inverse of
the square of the statistical error in each bin.
This is achieved by multiplying the expressions
for Nf,i and Nb,i by L2

i . Since this factor appears
both in the numerator and denominator of the

expression for Atotalfb−i, it does not change the ex-
tracted value or error of the parton level asymme-
try. However, when we combine y bins together
using event weighting, this factor accounts for the
difference in statistical errors between the yi bins
as follows.

k1,i = (1− wi)(1− 2wi) (15)
k2,i = (wi)(1− 2wi)

Ntotal =
∑

all−events

[1]

Sf =
∑

for−events

k1,i −
∑

back−events

k2,i

[∆Sf ]2 =
∑

for−events

k2
1,i +

∑
back−events

k2
2,i

Sb =
∑

back−events

k1,i −
∑

for−events

k2,i

[∆Sb]
2 =

∑
back−events

k2
1,i +

∑
for−events

k2
2,i

Atotalfb =
Sf − Sb
Sf + Sb

Now [∆Sf ] and [∆Sb] are correlated with each
other in a complicated way. In order to simplify
the calculation of the error, we combine terms to
isolate sums which are for forward events, and
sums which are for backward events, separately
as follows:

kA,i = k1,i − k2,i = (1− 2wi)2 (16)
kB,i = k1,i + k2,i = (1− 2wi)

Ntotal =
∑

all−events

[1]

A = Sf + Sb = A1 +A2

B = Sf − Sb = B1 −B2

A1 =
∑

forward−events

kA,i

A2 =
∑

back−events

kA,i

B1 =
∑

forward−events

kB,i
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B2 =
∑

back−events

kB,i

[∆A1]2 =
∑

forward−events

k2
A,i

[∆A2]2 =
∑

back−events

k2
A,i

[∆B1]2 =
∑

forward−events

k2
B,i

[∆B2]2 =
∑

back−events

k2
B,i

Atotalfb =
B

A
=
B1 −B2

A1 +A2

Now ∆A1 is 100% correlated with ∆B1 and
∆A2 is 100% correlated with ∆B2 . We handle
these correlations as follows.

∆A1 = ∆B1 ·
A1
B1

(17)

∆A2 = ∆B2 ·
A2
B2[

∆Atotalfb

]2
=

1
(A1 +A2)4

[
E2

1 + E2
2

]
E2

1 =
[∆B1]2

B2
1

(A2B1 +A1B2)2

E2
1 =

[∆B2]2

B2
2

(A1B2 +B1A1)2

A specific numerical example is shown in Ta-
ble 1. Here we show the case of a measurment of
Afb in ten bins of y for the range of y between
0 and 2.0. For this study we assume an asym-
metry Afb = 0.6 is measured with 1000 events
(for 0 < y < 2) in pp collisions at the LHC. We
assume that the differential cross section is con-
stant in y. The misID probability is assumed to
be w(y) = 0.5(2− y)/2 which is a simple approx-
imation to to the misID values for a dilepton
mass of 300 GeV/c2 at the LHC. In each range in
y we compare the error in the extracted p̄p asym-
metry from a simple count of events; the error
extracted from a least square fit to the values ex-
tracted from each y bin, and the error from the
our event weighting formula. As expected, the
error from the least square fit to the ten y bins
is the same as the error from our weighting for-
mula. The error using a simple count is about

20% larger than the error using the event weight-
ing scheme. The last column shows the error for
the case of p̄p collisions (with a misID=0).

5. Including information in the angular
distribution in p̄p collisions

We now investigate how much can be gained by
looking at the asymmetry in bins of xj = cosθj .
We start with the case of p̄p and divide the sam-
ple into ten bins in cosθj . The asymmetry as a
function of xj bin is:

Afb−j(xj) =
σf (xj)− σb(yj)
σb(xj) + σb(xj)

(18)

Afb−j(xj) =
Nf,j −Nb,j
Nf,j −Nb,j

=
Bxj

A(1 + x2
j + q(M``, θ, PT , y)

= Atotalfb−j

[
8xj

3(1 + x2
j + q(θ)

]

At xj = cosθj = 0, the measured asymmetry
Afb−j(0)=0. At xj = cosθj = 0.45, the mea-
sured asymmetry Afb−j(0.45) = AtotalFB . At xj =
cosθj = 1, the asymmetry Afb(1) = (4/3)Atotalfb .
The measured asymmetry in each xj = cosθj bin
can be related to the total (integrated over all
cosθ) asymmetry and therefore provides an inde-
pendent measurement Atotalfb−j of the total asym-
metry.

Atotalfb−j =
3
8
· Nf,j −Nb,j
Nf,j +Nb,j

· 1
Mj

(19)

∆Atotalfb−j =
3

8Mj

2
Nf,j +Nb,j

[
Nf,jNb,j
Nf,j +Nb,j

]1/2

Mj =
xj

(1 + x2
j + q(M``, θ, PT , y))

where we have used ∆Nf,j = (Nf,j)1/2 and
∆Nb,j = (Nb,j)1/2.

The above expression shows that for case in
which we have same number of events in each of
the bins, the error in the extracted measurement
of Atotalfb−j from the data in a specific xj = cosθj bin
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Table 1
Numerical example of measuring Afb in ten bins of y for the range of y between 0 and 2.0. For this study
we assume an asymmetry Afb = 0.6 which is measured with 1000 events (for 0 < y < 2) in pp collisions
at the LHC. We assume that the differential cross section is constant in y. The misID probability is
assumed to be w(y) = 0.5(2−y)/2 which is a simple approximation to to the misID values for a dilepton
mass of 300 GeV/c2. In each in range in y we compare the error in the extracted q̄q asymmetry from a
simple count of events, the error using a least square fit to the values extracted from each y bin, and the
error from the proposed event weighting formula. The error using a simple count is about 20% larger
than the error using the the proposed event weighting scheme. The last column shows the error for the
case of p̄p collisions (with a misID=0).
y − range N Simple Count y bins fit Weights Improv. p̄p
range bins Error pp Error pp Error pp Factor pp Error

0.-0.2 1 1.999 1.9991 1.9991 1.00 0.087
0-0.4 2 0.706 0.6301 0.6298 1.12 0.061
0-0.6 3 0.383 0.3350 0.3346 1.14 0.050
0-0.8 4 0.248 0.2145 0.2141 1.15 0.043
0-1.0 5 0.177 0.1512 0.1511 1.16 0.039
0-1.2 6 0.134 0.1136 0.1131 1.17 0.035
0-1.4 7 0.106 0.0886 0.0882 1.18 0.033
0-1.6 8 0.086 0.0711 0.0706 1.21 0.031
0-1.8 9 0.071 0.0582 0.0578 1.23 0.029
0-2.0 10 0.060 0.0483 0.0479 1.26 0.027

is equal to the error of the measured asymmetry
in the bin divided by a factor Mj = xj

(1+x2
j
+q(θ))

.
This factor comes from the fact that the extracted
total forward-backward asymmetry is more sen-
sitive to events at large xj = cosθj .

We now convert the procedure to event weight
technique. We define Atotalfb−j = (3/8)(NA,j/NB,j).

Nf,j = NA,f (1 + x2
j + q(θ)) + xjNB,f (xj)(20)

Nb,j = NA,f (1 + x2
j + q(θ))− xjNB,f (xj)

From which we get:

NA,j =
Nf,j

2(1 + x2
j + q)

+
Nb,j

2(1 + x2
j + q)

(21)

NB,j =
Nf,j
2xj

− Nb,j
2xj

In order to properly weight events for different
cosθj bins by the inverse of the square of the error
for each bin we multiply the above expressions by

M2
j =

x2
j

(1 + x2
j + q(M``, θ, PT , y))2

(22)

and get :

z1,j =
1
2

x2
j

(1 + x2
j + q(θ))3

(23)

z2,j =
1
2

xj
(1 + x2

j + q(θ))2

A1 = Nf,j · (z1,j)
A2 = Nb,j · (z1,j)
B1 = Nf,j · (z2,j)
B2 = Nb,j · (z2,j)

[∆A1]2 = Nf,j · z2
1,j

[∆A2]2 = Nb,j · z2
1,j

[∆B1]2 = Nf,j · z2
2,j

[∆B2]2 = Nb,j · z2
2,j

Aj = Nf,j(z1,j) +Nb,j(z1,j)
= A1 +A2 (24)

Bj = Nf,j(z2,j)−Nb,j(z2,j)
= B1 −B2 (25)

Atotalfb−j =
3
8
Bj
Aj

=
3
8
B1 −B2

A1 +A2



8 A Bodek

Table 2
Proton-Antiproton collisions: Numerical example for an asymmetry Afb = 0.6 measured with 1000 events.
Here Atotalfb is measured in ten bins of cosθ. In each cosθj bin we compare the error from the standard
error formula, and the error from the event weighting formula. As expected, the two yield identical
results. In addition, we show a comparison of the average Atotalfb of all ten cosθj bins calculated two
different ways. The error in the average extracted from a least square fit to the 10 Atotalfb−j values (0.0196)
is close to the error in the average determined from the weighted sum of all the events (0.0210). The
error in Atotalfb from the weighted sum of all the events is 20% lower than the error of 0.0253 obtained
from a simple count of all forward and backward events.

xj = nf nb Afb−j(xj) Atotalfb−j ∆Atotalfb−j ∆Atotalfb−j
cosθj measured extracted cosθj bin from weights

0.05 41 34 0.080 0.60 0.864 0.864
0.15 47 29 0.235 0.60 0.284 0.284
0.25 55 25 0.376 0.60 0.165 0.165
0.35 63 21 0.499 0.60 0.114 0.114
0.45 72 18 0.599 0.60 0.085 0.085
0.55 82 16 0.676 0.60 0.066 0.066
0.65 92 14 0.731 0.60 0.054 0.054
0.75 104 14 0.768 0.60 0.045 0.046
0.85 116 14 0.790 0.60 0.041 0.041
0.95 128 14 0.799 0.60 0.038 0.028
all 800 200 0.6 0.60 0.0196 0.0210
all 800 200 0.6 0.60 simple-count 0.0253

Now ∆A1 is 100% correlated with ∆B1 and
∆A2 is 100% correlated with ∆B2 . We handle
these correlations as follows.

∆A1 = ∆B1 ·
A1
B1

(26)

∆A2 = ∆B2 ·
A2
B2[

∆Atotalfb−j
]2

=
[

3
8

]2 1
(A1 +A2)4

[
E2

1 + E2
2

]
E2

1 =
[∆B1]2

B2
1

(A2B1 +A1B2)2

E2
1 =

[∆B2]2

B2
2

(A1B2 +B1A1)2

Table 2 shows the results of a numerical exam-
ple for an asymmetry Afb = 0.6 measured with
1000 events (we assume q=0). Here Atotalfb is mea-
sured in ten bins of cosθ. In each cosθj bin we
compare the error from the standard error for-
mula, and the error from the event weighting for-
mula. As expected, the two yield identical.

In addition, we show a comparison of the av-

erage Atotalfb for the ten cosθj bins calculated in
three different ways. The error in the average ex-
tracted from a least square fit to the 10 Atotalfb−j
values (0.0196) is close to the error in the av-
erage determined from the weighted sum of all
the events (0.0210). The error in Atotalfb from the
weighted sum of all the events is 20% lower than
the error of 0.0253 obtained from a simple count
of all forward and backward events.

For the case of low statistics, we can use the
event weighting technique to combine all the
events at all value of cosθ (we do not need to
bin the events in cosθ). The following are the
formulae to extract the best value and error from
the entire range in cosθ using the event weighting
technique :

z1,j =
1
2

x2
j

(1 + x2
j + q(θ, PT , y)))3

(27)

z2,j =
1
2

xj
(1 + x2

j + q(θ, PT , y)))2
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Table 3
Proton-Antiproton collisions: Numerical example of measuring Afb for different acceptance ranges in
cosθ. The example is for an asymmetry Afb = 0.6 and a total of 1000 events (for all values of cosθ).
For each cosθ range we show the error in Afb from a simple count, the error from the event weighting
procedure, and the error from fitting bins in cosθ (which is very similar to event weighting). Also shown is
the improvement factor in the error when the event weighting procedure is used (versus a simple count).
For a typical range of cosθ, using the simple weighting formula leads to more than 20% reduction in the
error.

cosθ N Simple Count cosθ bins Event Weights Improvement
range bins Error fit Error Error factor
0-0.1 1 0.8642 0.8642 0.8642 1.000
0-0.2 2 0.3042 0.2796 0.2687 1.132
0-0.3 3 0.1644 0.1410 0.1403 1.172
0-0.4 4 0.1058 0.0884 0.0881 1.201
0-0.5 5 0.0749 0.0611 0.0611 1.225
0-0.6 6 0.0563 0.0459 0.0454 1.241
0-0.7 7 0.0442 0.0346 0.0354 1.247
0-0.8 8 0.0358 0.0277 0.0288 1.242
0-0.9 9 0.0298 0.0230 0.0242 1.227
0-1.0 10 0.0253 0.0196 0.0210 1.205

Ntotal =
∑

all−events

[1]

A1 =
∑

forward−events

[z1,j ]

A2 =
∑

back−events

[z1,j ]

B1 =
∑

forward−events

[z2,j ]

B2 =
∑

back−events

[z2,j ]

[∆A1]2 =
∑

forward−events

[
z2

1,j

]
[∆A2]2 =

∑
back−events

[
z2

1,j

]
[∆B1]2 =

∑
forward−events

[
z2

2,j

]
[∆B2]2 =

∑
back−events

[
z2

2,j

]
A = A1 +A2

B = B1 −B2

[Afb]
total =

3
8
B

A
=
B1 −B2

A1 +A2

∆A1 = ∆B1 ·
A1
B1

∆A2 = ∆B2 ·
A2
B2[

∆Atotalfb

]2
=

[
3
8

]2 1
(A1 +A2)4

[
E2

1 + E2
2

]
E2

1 =
[∆B1]2

B2
1

(A2B1 +A1B2)2

E2
1 =

[∆B2]2

B2
2

(A1B2 +B1A1)2

Table 3 shows a numerical example of measur-
ing Afb for different acceptance ranges in cosθ
(we assume q=0). The example is for an asym-
metry Afb = 0.6 and an a sample of 1000 events
(for 0 < cosθ < 1). For each range of accep-
tance in cosθ we show the error in Afb from a
simple count, the error from the event weight-
ing procedure, and the error from fitting bins in
cosθ (which is very similar to event weighting).
Also shown is the improvement factor in the er-
ror when the event weighting procedure is used
(versus a simple count). For a typical range of
acceptance in cosθ, using the simple weighting
formula leads to more than 20% reduction in the
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error.
Note that when we use the angular distribu-

tion weights, the extracted Atotalfb is automati-
cally corrected for the acceptance in cosθ (since
the acceptance cancels to first order). However,
Ntotal =

∑
all−events [1] is equal to the observed

number of events and is not corrected for accep-
tance. For Ntotal, an acceptance correction is
needed for the determination of dσ/dM``

6. Combining misID weighting and angu-
lar distribution weighting in pp collisions

In pp collisions each event is can be character-
ized by a misID factor wi(yi) which is related to
the quark and antiquark distribution at its value
of (yi). In addition, each event has a measured
value of xj = cosθj . The expressions for combin-
ing events with different xj = cosθj and misID
wi values are given by:

kA,i = k1,i − k2,i = (1− 2wi)2 (28)
kB,i = k1,i + k2,i = (1− 2wi)

Ntotal =
∑

all−events

[1]

z1,j =
1
2

x2
j

(1 + x2
j + q(θ))3

z2,j =
1
2

xj
(1 + x2

j + q(θ))2

A1 =
∑

for−events

[z1,jkA,j ]

A2 =
∑

back−events

[z1,jkA,j ]

B1 =
∑

for−events

[z2,jkB,j ]

B2 =
∑

back−events

[z2,jkB,j ]

[∆A1]2 =
∑

for−events

[
z2

1,jk
2
A,j

]
[∆A2]2 =

∑
back−events

[
z2

1,jk
2
A,j

]
[∆B1]2 =

∑
for−events

[
z2

2,jk
2
B,j

]

[∆B2]2 =
∑

back−events

[
z2

2,jk
2
B,j

]
A = A1 +A2

B = B1 −B2

[∆A1] = [∆B1] · A1
B1

[∆A2] = [∆B2] · A2
B2

Atotalfb =
3
8
B

A
=
B1 −B2

A1 +A2[
∆Atotalfb

]2
=

[
3
8

]2 1
(A1 +A2)4

[
E2

1 + E2
2

]
E2

1 =
[∆B1]2

B2
1

(A2B1 +A1B2)2

E2
1 =

[∆B2]2

B2
2

(A1B2 +B1A1)2

Table 4 shows a numerical example of the im-
provement in the errors that that can be realized
by using the information for both the misID (wi)
and cosθi on an event by event basis, versus the
measurment of Afb using a simple count of all
events for all values of cosθ and y (within the
experimental acceptance). We show the case for
an asymmetry Afb = 0.6 measured with 106 pp
events (over all values of cosθ and 0 < y < 2 ) for
the case of a dilepton mass of 300 GeV/c2 at the
LHC. The two dimensional table shows the im-
provement factor in the the errors (over the sim-
ple count method) when we use event weighting
in both cosθ and MisID as a function of y. For
a typical experimental acceptance in cosθ and y,
the weighting formula leads to a 40% reduction in
the error (over the error obtained from a simple
count).

The following are the advantages for using the
event weighting.

1. For p̄p collisions (for which event weighting
can only be done in cosθ) the error is typi-
cally reduced by a factor of 1.2.

2. For pp collisions ((for which event weighting
can be done in both cosθ and y)t he error
is reduced by a a factor of 1.4.

3. The method provides the acceptance cor-
rected asymmetry without applying any ac-



A simple event weighting technique 11

Table 4
Proton-Proton Collisions: Numerical example of measuring Afb integrating over various ranges of cosθ

and various ranges of y for the case of a dilepton mass of 300 GeV/c2 at the LHC. Here we assume that
the asymmetry Afb = 0.6 measured with 106 events for values of cosθ and 0 < y < 2. Shown is the
improvement factor in the the error (over the simple count method) when we use event weighting in both
cosθ and w = MisID as a function of y. For a typical range of acceptance in cosθ and y, the weighting
formula leads to a 40% reduction in the error (over the error obtained from a simple count).
y − range 0-0.2 0-0.4 0-0.6 0-0.8 0-1.0 0-1.2 0-1.4 0-1.6 0-1.8 0-2.0
cosθ
range

0-0.1 1.00 1.12 1.14 1.15 1.16 1.17 1.18 1.21 1.23 1.26
0-0.2 1.13 1.27 1.29 1.30 1.31 1.32 1.34 1.37 1.39 1.43
0-0.3 1.17 1.31 1.34 1.35 1.36 1.37 1.38 1.42 1.44 1.48
0-0.4 1.20 1.35 1.37 1.38 1.39 1.41 1.42 1.45 1.48 1.51
0-0.5 1.23 1.37 1.40 1.41 1.42 1.43 1.45 1.48 1.51 1.54
0-0.6 1.24 1.39 1.41 1.43 1.44 1.45 1.46 1.50 1.53 1.56
0-0.7 1.25 1.40 1.42 1.43 1.45 1.46 1.47 1.51 1.53 1.57
0-0.8 1.24 1.39 1.42 1.43 1.44 1.45 1.47 1.50 1.53 1.56
0-0.9 1.23 1.37 1.40 1.41 1.42 1.44 1.45 1.49 1.51 1.55
0-1.0 1.21 1.35 1.37 1.39 1.40 1.41 1.42 1.46 1.48 1.52

ceptance corrections for missing coverage in
cosθ . The acceptance fully cancels to first
order, and is not used in the extraction of
the acceptance corrected asymmetry.

4. Only small corrections need to be made
are detector resolution and radiative smear-
ing effects. Most of these correction are
already included if an empirical fit wi =
f(y``,measured,M``,measured)isused..

5. Only small corrections need to be made
for QCD corrections to the angular distri-
bution. Most of these corrections are al-
ready included if we use an empirical fit for
q(θ,M``, PT , y).

6. Since the method does not use the accep-
tance to first order, the weighted sums for
A1, A2, B1, B2, ∆B1, and ∆B2 from dif-
ferent run conditions, or different final state
leptons (muon,electrons) or different exper-
iments (e.g. Dzero and CDF or CMS and
ATLAS) can be directly added to provide a
combined result. This is important for mass
bins at high mass for which there are only
a few events in each detector.

7. Corrections factors and systematic un-
certainties in the weighting procedure

For pp collisions, the acceptance for forward
and backward events is equal because of symme-
try. Therefore the functional dependence of the
acceptance in cosθ fully cancels if the acceptance
for positive and negative muons is the same. For
p̄p collisions one needs to correct for a possible
small difference in the detector performance be-
tween the proton and antiproton directions.

7.1. backgrounds
The main experimental background is QCD di-

jet events. The QCD jet background is measured
by statistically separating isolated muons (or elec-
trons) from muons (or electron like objects) in jets
on the basis of the transverse energy profile dis-
tributions in the calorimeter [11] (e.g. isolation
energy variables).

In general QCD processes are mediated via spin
1 gluon exchange and therefore have the same an-
gular distribution as Drell Yan events. If such is
the case, the factional QCD background is the
same at all values of cosθ and is the same for
positive and negative values of cosθ. Therefore,
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in the expressions for the asymmetry, the QCD
background cancels in the numerator. Correc-
tions for this background only increases the level
of the denominator. Therefore, a single multi-
plicative factor equal to 1/(1 − f) (where f is
the fraction of QCD background events) can be
used to correct the extracted Afb for QCD back-
ground. The same multiplicative correction fac-
tor for QCD background can be use for all three
methods (simple count, fit to bins in cosθ and
event weighting technique). Possible deviations
from this assumption can be included in the sys-
tematic error.

Another background originates from elec-
troweak (EW) processes (WW , WZ, W+jets,
and τ+τ−) and tt̄). This background is gener-
ally estimated from a Monte Carlo simulation. If
the event weighting technique is used to extract
the forward-backward asymmetry, then the event
weighting technique can be used on Monte Carlo
samples for the Drell-Yan signal and the elec-
troweak background processes to determine the
shift in Afb from EW backgrounds. Note that
the contribution from from τ+τ− events is very
small (and at high mass Afb for τ+τ− is similar
to Afb for µµ and e+e− events).

7.2. Systematic and PDF errors
As is generally the case in particle physics ex-

periments, the procedure needs to be tested on
Monte Carlo simulated data to determine the size
of any pulls from the previously listed systematic
effects. We note that this process to determine
biases and pulls needs to be done for any proce-
dure that is used to extract the forward-backward
asymmetry for qq̄ processes from data. Our pro-
cedure is designed to minimize these biases, but
they still need to be determined from a full scale
Monte Carlo simulation.

In pp collisions at the LHC, there are uncertain-
ties from antiquark distribution functions that
affect the misID probabilities (which are deter-
mined using a Monte Carlo simulations)

For dilepton mass below 300 GeV/c2, the Stan-
dard Model Parameters are already very well con-
strained by e+e− data from LEP, and Afb data
from p̄p collisions at the Tevatron.

Therefore, for the case of pp collisions at the

LHC, requiring the asymmetry data below a
dilepton mass of 300 GeV/c2 (at the LHC) to
agree with the Standard Model expectation yields
additional constraints on the parton distribution
functions for the antiquarks in the proton. We do
this by binning the data in bins of y (reversing
equation 13) and using Li = 1− 2wi as follows:

Ameasuredfb (wi) =
nf,i − nb,i

ni
(29)

∆Ameasuredfb (wi) =
2
ni

[
nfnb,i
ni

]1/2

wmeasuredi = 0.5

[
1−

Ameasuredfb

2ASMfb

]

∆wmeasuredi =
∆Ameasuredfb

4ASMfb

wi ≈
Ri

1 +Ri

Ri =
q̄(x1)/q(x1)
q̄(x2)/q(x2)

Rmeasuredi ≈ wmeasuredi

1− wmeasuredi

∆Rmeasuredi ≈ ∆wmeasuredi

(1− wmeasuredi )2

For example, if we have 100 events for dilepton
mass of 300 GeV/c2 in a yi = 1.1 bin we esti-
mate wi = 0.226. For these values, ASMfb,i =0.6,
Ameasuredfb,i =0.33, ∆Ameasuredfb,i =0.094. This pro-
vides a measurement of wi = 0.226 with an error
∆wi = 0.0236 and an extracted value of Ri =
0.290 with an error ∆Ri = 0.039. In order to im-
prove the error by a factor of 1.2 we should use
the event weighting technique in cosθ (equations
23 - 26) to evaluate Ameasuredfb and ∆Ameasuredfb

(instead of the event counting method expres-
sions given in equation 29). With cosθ weighting
and 100 events we find that Ri = q̄(x1)/q(x1)

q̄(x2)/q(x2) of
0.29 can be measured with an error ∆Ri = 0.033
(about 10%).
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8. Summary

We have shown that a simple event weighting
technique can be used to reduce the statistical er-
ror on the extracted q̄q forward-backward asym-
metry from Drell-Yan events in p̄p and pp colli-
sions. In addition to reducing the statistical error,
the event weighting technique is not sensitive to
details of the experimental acceptance.

In pp collisions at the LHC. the asymmetry
data for a dilepton mass below 300 GeV/c2 can
be used to provide additional constraints on the
antiquark fractions in the nucleon.

The asymmetry data for a dilepton mass above
300 GeV/c2 (for both pp and p̄p collisions) can be
used to search for new Z ′ bosons.

REFERENCES

1. We define (θ,φ,z), where θ is the polar angle
relative to the quark direction (the +z axis),
and φ the azimuth. For a lepton (e+ + e−

or µ+ + µ−) pair with transverse momentum
PT = Psinθ, energy ET = Esinθ, the ra-
pidity y = 1

2 ln
E+Pz

E−Pz
. Here, P and Pz are the

magnitude and z component of the momen-
tum, and E is the energy of the lepton pair.

2. J.L. Rosner, Phys. Rev. D 35 (1987) 2244; M.
Cvetic and S. Godfrey, in: T.L. Barklow (ed.)
et al., Electroweak Symmetry Breaking and
New Physics at the TeV Scale (World Scien-
tific, 1995), 383, hep-ph/9504216; D. London
and J.L. Rosner, Phys. Rev. D 34 (1986) 1530.

3. F. Abe et al.,, Phys. Rev. Lett. 79, 2192
(1997); M. Pillai, Ph.D. Thesis, Univ. of
Rochester, UR-1478 (1996).

4. B. Abbott et al., Phys. Rev. Lett. 82, 4769
(2000).

5. J. Rosner, Phys. Rev. D54, 1078 (1996); J.
Rosner, Phys. Rev. D35, 2244 (1987); V.
Barger, D.G. Deshpande, J. Rosner and K.
Whisnant, Phys. Rev. D35, 2893 (1987), J.
Rosner, Phys. Rev. D61, 016006 (2000).

6. Arie Bodek and Ulrich Baur,
Eur.Phys.J.C21:607-611,2001.

7. John C. Collins and Davison E. Soper, Phys.
Rev. D. 16, 2219 (1977).

8. T. Sjøstrand et al., JHEP05(2006)026 ( hep-

ph/0603175).
9. U. Baur, O. Brein, W. Hollik, C. Schap-

pacher, and D. Wackeroth, Phys. Rev. D 65,
033007 (2002).

10. A. Bodek, Nucl. Inst. and Meth. 117, 613
(1974); errata 150, 367(1978); A. Bodek
SLAC-TN-74-2 (1974, unpublished).

11. Jiyeon Han, PhD Thesis, University of
Rochester, FERMILAB-THESIS-2008-65.

http://arxiv.org/abs/hep-ph/9504216
http://arxiv.org/abs/hep-ph/0603175
http://arxiv.org/abs/hep-ph/0603175

	Introduction
	 q"7016q annihilations
	 Misidentification of the quark direction in pp collisions
	 Correcting for misID in pp collisions
	Including information in the angular distribution in "7016pp collisions
	Combining misID weighting and angular distribution weighting in pp collisions
	Corrections factors and systematic uncertainties in the weighting procedure
	 backgrounds
	 Systematic and PDF errors

	Summary

