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Chapter. 5

Bound States: Simple Case

Outline:

* The Schrodinger Equation (for interacting particles)
* Stationary States

* Physics Conditions: Well-Behaved Functions

* A Review of Classical Bound States

* Case 1: Particles in a Box — The Infinite Well

* Case 2: The Finite Well

* Case 3: The Simple Harmonic Oscillator

* Expectation Values, Uncertainties, and Operators

The spatial part of y(x,t)

The time-independent
Schrodinger equation:
= E d>ur(x)

2m  dx?

+ Uxf(x) = Eyix)

Spatial part
Y(x) is Real,

but y(x,t) is Complex, because
pl=c

NOTE:

Well-behaved wave
functions

Normalization of y(x.,z)

Smoothness of y(x,z)

———————————




Normalization of y(x,t)

j |W(x, H|2dx = 1
all space

The particle must be
somewhere in the universe
at any time

(the total probability should
be=1)

Smoothness of y(x,z)

1. Continuity of y(x,)
2. Continuity of (dy(x)/dx)

Smoothness of y(x,z)

Disconﬁnuity Short wave length become zero wave length.

in 1/’(’5) i.e. infinite momentum & K.E.

(physically unacceptable...)

Smoothness of y/(x,t)

Y(x)

/

Discontinuity

iy = L T it
iny) | (PO _j;p(x)e dx

Extremely large k (or short A) —>
—> Infinite Momentum (mpossible




Summary

B(1) = e —iEM Temporal part

_im + Ux)p(x) = Eir(x)

2m dx? .
Spatial part
Wix, t) = (x)e e Total wave
function

Normalization of y(x.,z)

Smoothness of y(x.,z)
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5.5 Case. 1

Particle in a Box: The Infinite Well

The situation in which the particle-confining U(x)
allows the simplest solution of the time-independent
Schrodinger equation is called “particle in a box”, or
“infinite well”

CM: simply bounce back & forth

QM: standing waves € Schrodinger Eq.
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Case I: Particle in a box —
Infinite Potential well

| o> Particle in a box

E-field in each capacitor
exerts a force, F =(-¢)E,

\ |
= - ' .
- Energy . . i
) E=KE f With total E < eV, the electron is bound: Its KE
i i U=0 drops to “0” before it can reach a capacitor’s
0 L X

outer plate, and it returns in the opposite




Case I: Particle in a box —
Infinite Potential well

I o> | Particle in a box

U, x<0,x>1L

0 0<x<<lL
Ux) =

11

U=UD

1. Continuity of ¢ (x\)
2. Continuity of (dy(x)/dx)

Region (0 <x<L)

Since U(x) = 0 here, the time-independent Schridinger equation (4-8) is

h? d>p(x) d(x) 2mE
§ Ey(x) or R T (x)

For convenience, let us make the following definition (which we very soon
see is a wave number, thus the symbol):
2mE
ﬁZ
Thus,

d?(x)
Tz - Y@

k=

(4-11)

r(x) = A sin kx and Y(x) = B cos kx

i(x) = A sin kx + B cos kx

General solution -

for region I

©) | m




Region Il (x>L)

Since U(x) is the same, the mathematical solution of the Schrodinger equa-
tion in this region is the same as in region II. Thus,

U(x) = Fete* 4 Ge

U= Uy
i 5228 A crucial difference in this region is that the constant a2 is positive, where
E=KE it was negative before (i.e., —k?). A pair of independent solutions is
0 e Y@) = Ce** and ¢(x) = De=
Region Il (x < 0) and the general solution is the sum:
Here, U(x) = U, so the time-independent Schridinger equation is (x) = Ce*® + De~°*
R dPY) d*p(x)  2m(U, — E)
2m dx? i ﬁ‘p(x) =£0e) axr h? W L
Again we make a simplifying definition: @
1 11l
i 2m(U, — E) e ' b=ty
St T (4-12) S pZ
E=KE
Thus, @ U=0
0 L X
d*P(x)
11 I @ 11 1 1
—— U= Uy
T T — U=Uy
E= E=KE
u=0
0 / BRRES: > e U=0

X — £

1/j—>oo

| F=D=0 |

However, the physically unacceptable term in this case is e ***, which di-
verges as x — + for any value of U,: F must be zero.
Altogether, we have FU el

Cetex x<0
P(x) = A sin kx + B cos kx 0i<x <L (4-13)
Ge @~ Serall

where k /zﬁlf and a = {g%_g)




11 A | A 111 11 , I 1 111
— U= U=0 U=ce _— > U= U=0 = oo
E=KE E=KE
0 L X 0 L X
Ce-i-n'.\' X < 0 ]
Y(x) = A sinkx + Becoskx 0<x<L C=G= W) = Asinkx + Beoskx 0<x<L
Ge ~** = 0 x= 0,2 > L
A sin kx + B cos kx << L
W= 0 oot i, 0 2 I From Smoothness:
| G I I n 1 I il
U=°° U=O U:oo U=°° U=O U:oo
E=KE E=KE
0 & X

Continuity for

If the wave functipn as a whole is to be continuous, its pieces must have the

| Space’

same value at x = (). Thus,

(/l"(O) = l/II(O)
or

0 = A sin k0 + B cos

0 L X
\ .

oo A sin kx + BRofky/ 0<x<L
x) =
0 ¥ 0.2 > L
’JJl(L) = wm(L)
or kL = nr

A sin kL = 0 =




kL = nm

2mE

E =

n2mw2h?
2mlL>

nr = FE =

n
) = A sin —x <x < E
P, (x) = A sin L x (0 X L) o 2mL2

@
Smoothness of w(x,@)

Normalization of y(x,t):

fu |[W(x, H]2dx = 1
all space

e £ nw
f |W(x, 12 dx = f |(x) |2 dx = f Asin —x| dx =
all space —% 0 L
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