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Chapter. 4

Wave & Particles Il

“Matter” behaving as “Waves”

Outline:

* A Double-Slit Experiment (watch “video”)

* Properties of Matter Waves

* The Free-Particle Schrodinger Equation

* Uncertainty Principle

* The Bohr Model of the Atom

* Mathematical Basis of the Uncertainty Principle —
The Fourier Transform

The Uncertainty Relations and the
Fourier Transform

Any wave may be expressed mathematically as a
superposition of plane waves of different
wavelengths and amplitudes
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Fourier Transform
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Fourier Transform
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Probability Density:

Gaussian Wave Packet
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Gaussian Wave Packet

Find the ~
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“Spectral Content”:
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“Spectral Content” is

a Gaussian function /
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Gaussian Wave Packet

Minimal Uncertainty
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Chapter. 5

Bound States: Simple Case

Purpose:

* To make QM useful in real application,
* we must have a way to account for the effects of
external forces**

Let’s start with the Schrodinger eq. to include these
effects.

** interaction of object with its surrounding




Chapter. 5

Bound States: Simple Case

Outline:

* The Schrodinger Equation (for interacting particles)
* Stationary States

* Physics Conditions: Well-Behaved Functions

* A Review of Classical Bound States

* Case 1: Particles in a Box — The Infinite Well

* Case 2: The Finite Well

* Case 3: The Simple Harmonic Oscillator

* Expectation Values, Uncertainties, and Operators

The Schrodinger Equation
for Interacting Particles

A Particle Interacting
With What?

for Interacting Particles

A Particle Interacting
With What?

Simplification:
The Concept of Potential

(replaces all individual
particle-particle interactions
with a single smooth potential)

Why? — see next page
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A bound system: any system of interacting particles where the
nature of the interactions between the particles keeps their — Ax —
relative separation limited. Classical example: the solar system.

In general, the problem is very difficult.

Simplification: motion of a single particle that moves in a fixed potential energy field U(x).
The mass of the particle is small compared to the total mass of the system (e.g. heavy
nucleus - light electron).

Classical bound system: E(x)= K(x) +U(x)
Energy
Classically allowed region:

E(x)>U(x) K(x)>0

Total energy

Kinetic U - potential
energ energy

Distance

classically classically
allowed region forbidden
turning points

E(x)=U(x)

Classically forbidden region:

E(x)<U(x)

classically
forbidden
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V=u V=c

The Infinite Square Well

a particle in the potential is completely free, except at the two

V=e V=e ends where an infinite force prevents it from escaping
V=0 Outside the well: 1//(x) =0 - the probability of finding the particle =0
0 L X
Inside the well: _h_zdzl//_gx) = El//(x)
2m  dx
2
le/Tgx) = —kzl//(x) k= \/2;:—E - the harmonic oscillator equation
General solution: y/(x) = Asinkx+ Bcoskx - constants A and B are fixed by boundary conditions

v (0)=y(L)=0
w(L)=AsinkL=0 kL=0,+7z,+2x,...

Continuity of the wave function: w(0)=AsinkO+BcoskO=B=0

Thus, l//(x) = Asin kx

nrw
k,=—,n=12,
L
n — quantum number (1D motion is

characterized by a single qg.n., for 2D motion
we need two quantum numbers, etc.)

See later for details




