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Chapter. 4

Wave & Particles Il

“Matter” behaving as “Waves”

Outline:

* A Double-Slit Experiment (watch “video”)

* Properties of Matter Waves

* The Free-Particle Schrodinger Equation

* Uncertainty Principle

* The Bohr Model of the Atom

* Mathematical Basis of the Uncertainty Principle —
The Fourier Transform

The Free-Particle
Schrodinger Wave
Equation
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4.3 The Free-Particle Schrodinger Eq.

**&%*% Probability Density
--- Probability of detecting the particle ~ (wave’s Amplitute)?
[Q] What does this mean if wave has 2 parts;
E & B or real & imaginary part of y(x,t)?
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Probability Density = ?

per unit length

probability of figding the particle in certain region!! per unit volume
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The Plane Wave
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Is the Plane Wave

a solution of the Schrodinger Equation?
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Is the Plane Wave

a solution of the Schrodinger Equation?

Is the Plane Wave
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5 Taking the partial derivatives on both sides..

— —(ik)2Aeitkx—wn = jfi(—jw)Aeitke— w0
nt




Is the Plane Wave

a solution of the Schrodinger Equation?
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Is the Plane Wave

lution of the Schrodinger Equation?
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Let’s see how the Schrodinger wave eq. relates
to the classical physics of particle?
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Is the Plane Wave Is the Plane Wave

lution of the Schrodinger Equation?
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Mean:

Particle’s KE = Total E
h2k2
= True, classically!!
=( fiw

since a free particle has no PE

lution of the Schrodinger Equation?
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The Schrodinger equation is related to
a classical accounting of energy!!

Mean:
Particle’s KE = Total E
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Is the Plane Wave The Magnitude of a Plane Wave
lution of the Schrodinger Equation?
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The Schrodinger equation is related to
a classical accounting of energy!!
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= True, classically!!
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i —t Constant in space and time!
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E= = Constant Probability Density

The Schrodinger equation is based upon energy. The simplest solution is a
plane wave, a complex exponential with two sinusoidal parts. The wave’s
magnitude and the probability density vary neither in time nor in position.
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Uncertainty
Principle

If a phenomenon has a wave nature, it is theoretically impossible to know
precisely the position along an axis and the component of momentum along
that axis simultaneously; Ax and Ap . cannot be simultaneously zero. Rather,
there is a strict theoretical lower limit on their product:
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AX = eo;
position completely unknown;
A and p well defined
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Ax finite;
position better known;
A and p less well defined
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Axsmall:
position even better known;
A and p even less well defined

Wave Packet Envelope

W(x)=V,(xt)+V,(xt)= 2Aoos{ Azk X- Aé" t)cos(k,,x— w,,t)

=  The superposition of two waves yields a wave number (k) and angular

frequency (o) of the wave packet envelope. Aw
X
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»  We can identify a localized region AX = X, — X4 w}v‘ere X1 & X, represent two
consecutive points where the envelope is zero. This must be different by a
phase of = for the values x; & x, , because x, — x; represent only one half of
the wavelength of the envelope confining the wave.

= The range of wave numbers and angular frequencies that produce the wave
packet have the following relations:
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m Similarly, Aw@ Af=2x

Wave Packet Envelope

B B0
2 2
n
Ak Ax =27 Aw At =2x
= A Gaussian wave packet has similar relations:
AkAX = ! Ao At =1
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m  The localization of the wave packet over a small region to describe a
particle requires a large range of wave numbers. Conversely, a small
range of wave numbers cannot produce a wave packet localized
within a small distance.




. . Gaussian wave packets are often used to represent
G aussian F un Ctl on the position of particles, because the associated

integrals are relatively easy to evaluate.
= A Gaussian wave packet describes the envelope of a pulse wave.
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Uncertainty Principle

It is impossible to measure simultaneously, with no uncertainty, the
precise values of k and x for the same particle. The wave number k
may be rewritten as
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For the case of a Gaussian wave packet we have
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Thus for a single particle we have Heisenberg’ s uncertainty
principle: A

Energy Uncertainty

= If we are uncertain as to the exact position of a particle, for example
an electron somewhere inside an atom, the particle can’ t have zero
kinetic energy. 5 5 5
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= The energy uncertainty of a Gaussian wave packet is

AE=hAf =12% —h Ao
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combined with the angular frequency relation
Ao At = ﬁAt = 1
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= Energy-Time Uncertainty Principle: AE At > 7"

Gaussian Wave form
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AxAp . = 5 /i =minimum uncertainty

W(x 0) = A e~(x2b cos(kx)




