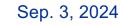
PHYS-3301

Lecture 4

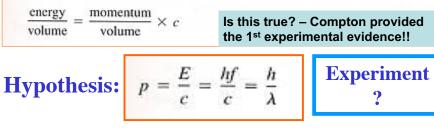


The Compton effect (Arthur Compton 1927)

 According to special relativity, an object with zero mass should have momentum related to its energy by

E = pc

 Classical electromagnetic wave theory shows that electromagnetic waves do carry momentum, although for a diffuse wave, we speak of momentum "density." It is related to the energy density by

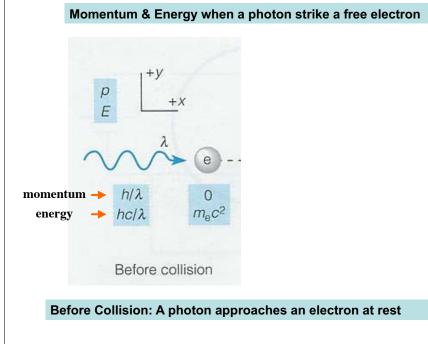


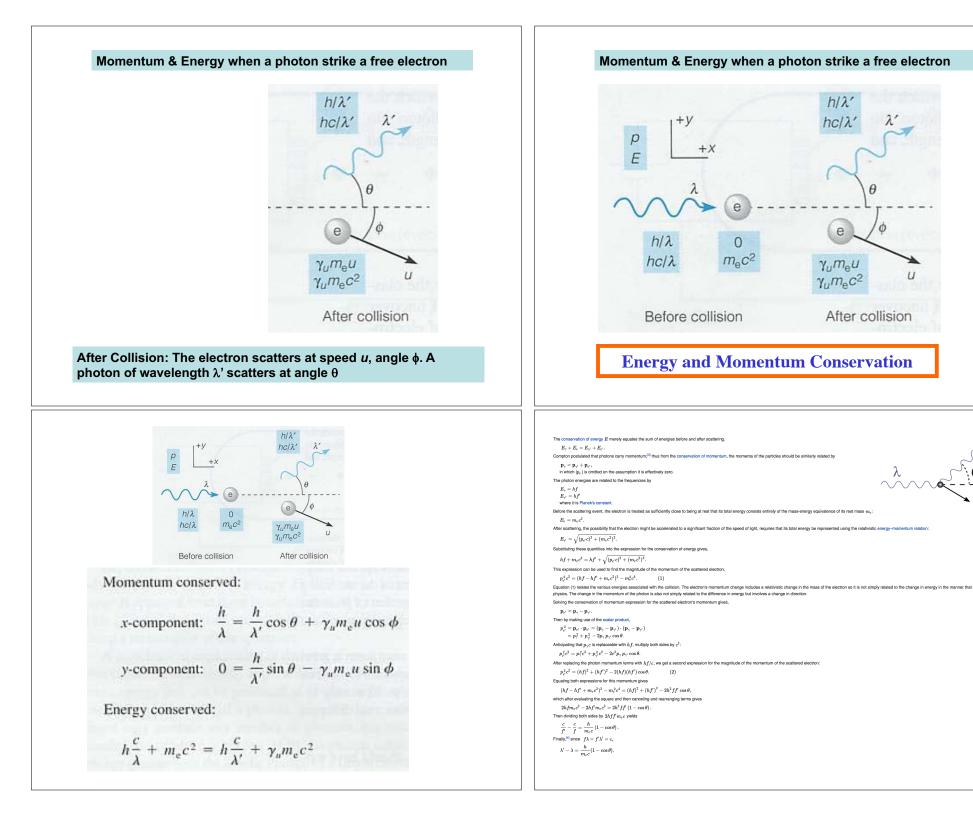
Chapter. 3 Wave & Particles I

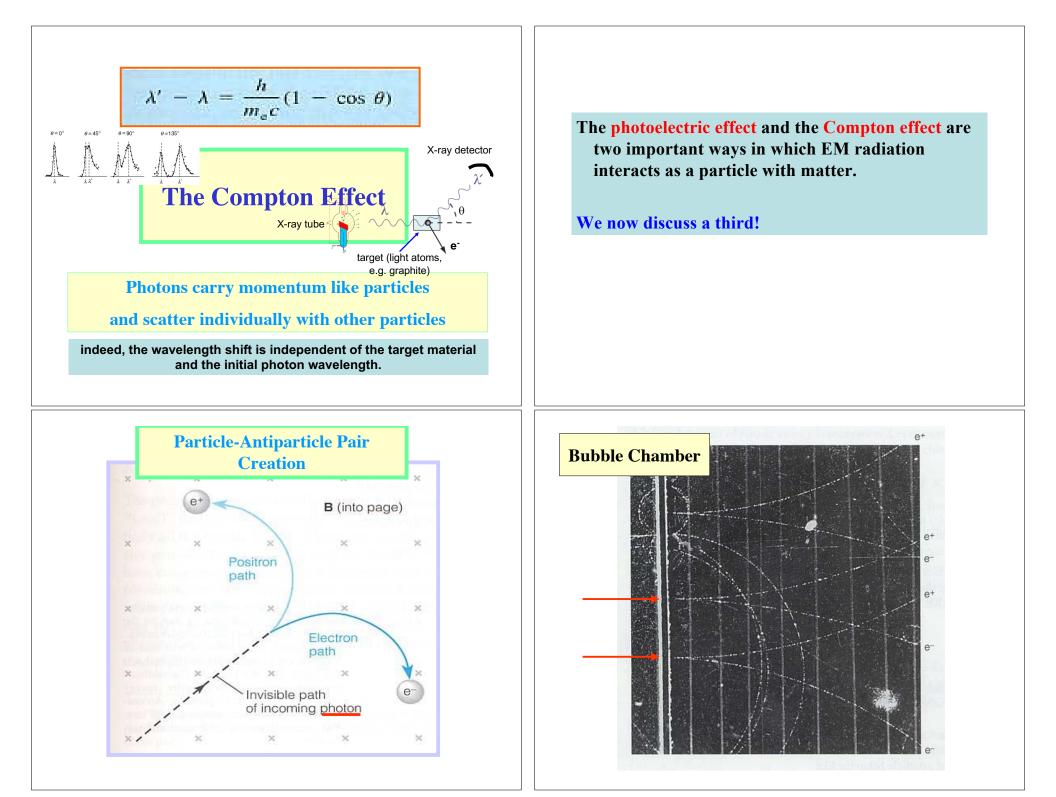
EM-"Waves" behaving like "Particles"

Outline:

- Blackbody Radiation (Plank; 1900; 1918*)
- The Photoelectric Effect (Einstein; 1905; 1921*)
- The Production of X-Rays (Rontgen;1901; 1901*)
- The Compton Effect (Compton; 1927; 1927*)
- Pair Production (Anderson; 1932; 1936*)
- Is It a Wave or a Particle? → Duality?







Q:

Calculate the energy and wavelength of the least-energetic photon capable of producing an electron-positron pair.

[Hint] Photon E goes to the massive particles as internal energy + KE. The least energetic one must still create the particles but would leave them no KE....

Electromagnetic Waves
behaving like
Particles "PHOTONS"
(Chapter 2)Black Body Radiation
The Photoelectric Effect
The Production of X-Rays \longleftrightarrow PHOTONS
E = hfThe Compton Effect
Photoelectric Pair Production \longleftrightarrow PHOTONS
 $p = hf/c = h/\lambda$ Particle-Antiparticle Pair Production \longleftrightarrow \circlearrowright

Example 2.5

Calculate the energy and wavelength of the least-energetic photon capable of producing an electron-positron pair.

Solution

The energy in the photon becomes the energy of the massive particles, internal/ mass energy plus any kinetic energy. The minimum energy required is that which is barely able to produce the pair, with *no* kinetic energy. In this case, the photon energy equals just the internal energy of the pair:

m/s)

$$2 \cdot m_e c^2 = 2(9.11 \times 10^{-31} \text{ kg})(3 \times 10^8 \text{ m/s})^2$$

$$= 1.64 \times 10^{-13} \text{ J} \ (\cong 1 \text{ MeV})$$

Thus,

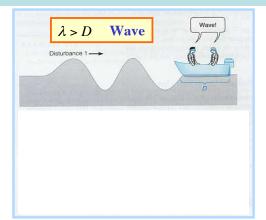
C

$$= 2m_{e}c^{2} \implies \lambda = \frac{hc}{2m_{e}c^{2}}$$
$$= \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})(3 \times 10^{8})}{1.64 \times 10^{-13} \text{ J}}$$
$$= 1.21 \times 10^{-12} \text{ m}$$

Photon properties:		accenter environter com objetier
E = hf	(2-1)	$p = \frac{h}{\lambda}$
Photoelectric effect:		Compton effect:
$KE_{max} = hf - \phi$	(2-2)	$\lambda' - \lambda = \frac{h}{m_{\rm e}c}(1 - \cos\theta)$

Is It a Wave or a Particles? Duality

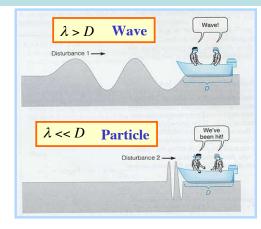
- Ch.3 E&M-Waves behaving like Particles
- Ch.4 Particles behaving like Waves

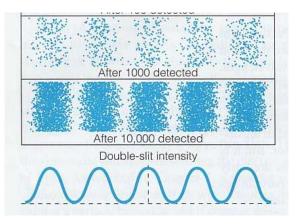


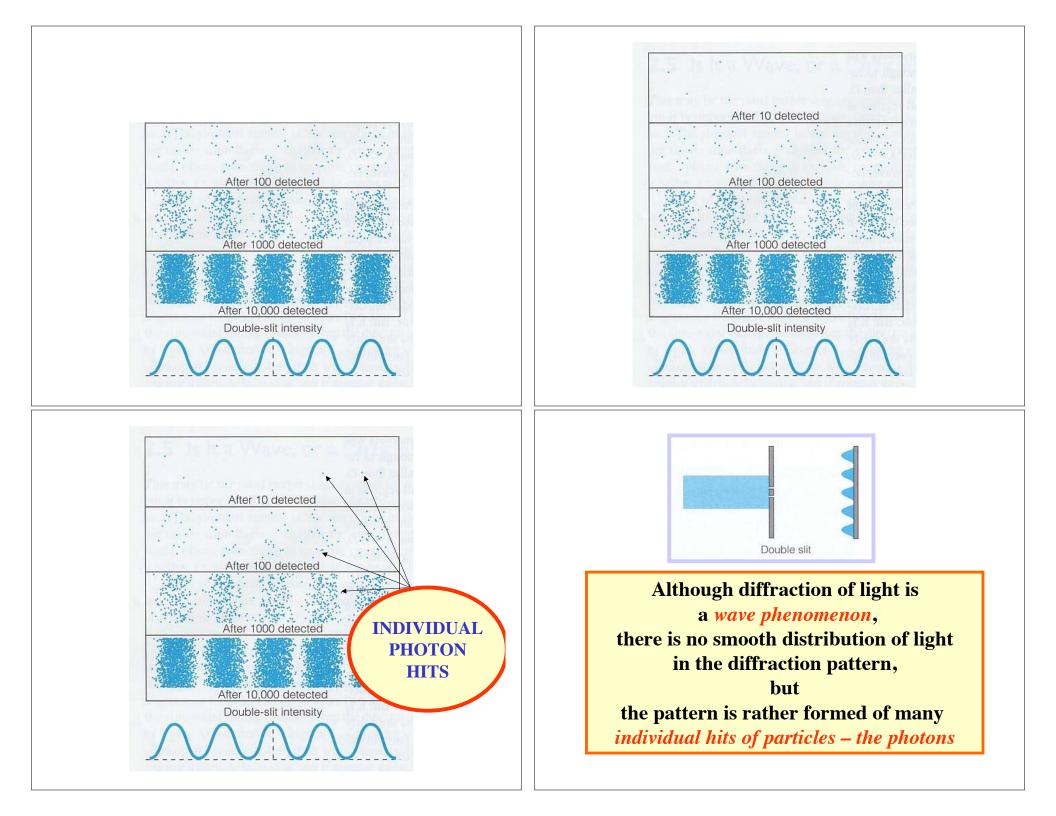
Double-slit Diffraction Experiment

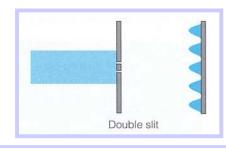
Is It a Wave or a Particles? Duality

Ch.3 EM-Waves behaving like Particles Ch.4 Particles behaving like Waves









A single photon DOES NOT get "disintegrated" in the Diffraction process to make a smooth diffraction pattern When a phenomenon is detected as *particles*, it cannot be predicted with certainty where a given particle will be found. The most that can be determined is a probability of finding it in a given region, and this "probability density" is proportional to the square of the amplitude of the associated *wave* in that region.

probability density of finding *particle* \propto (amplitude of *wave*)²

Coming back to that soon...

Chapter. 4 Wave & Particles II

"Matter" behaving as "Waves"

Outline:

- A Double-Slit Experiment (watch "video")
- Properties of Matter Waves
- The Free-Particle Schrödinger Equation
- Uncertainty Principle
- The Bohr Model of the Atom
- Mathematical Basis of the Uncertainty Principle The Fourier Transform

