

Aug. 29, 2024

The Planck's Black-Body Radiation Law:

The Energy (E) in the electromagnetic radiation at a given frequency (f)

may take on values restricted to

$$E = nhf$$
 where:

n = an integer

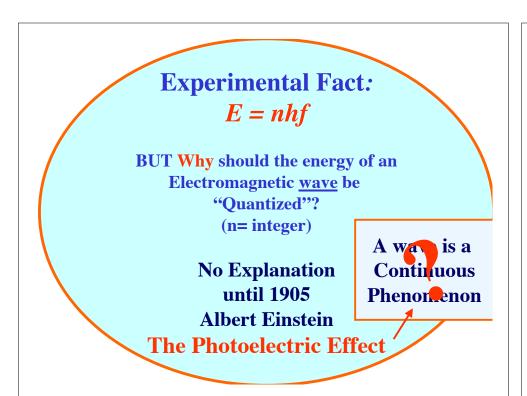
h = a constant $h \approx 6.626 \times 10^{-34} J \cdot s$

("Planck Constant")

Chapter. 3 Wave & Particles I

EM-"Waves" behaving like "Particles"

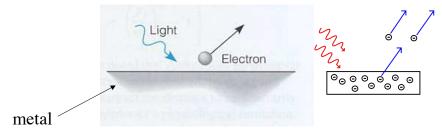
Outline:


- Blackbody Radiation (Plank; 1900; 1918*)
- The Photoelectric Effect (Einstein; 1905; 1921*)
- The Production of X-Rays (Rontgen;1901; 1901*)
- The Compton Effect (Compton; 1927; 1927*)
- Pair Production (Anderson; 1932; 1936*)
- Is It a Wave or a Particle? → Duality?

Blackbody Radiation: A New Fundamental Constant

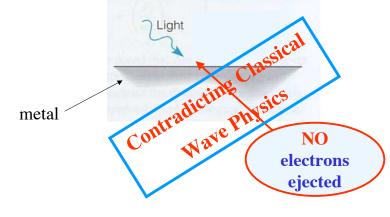
Plank's spectral energy density is the critical link between temperature and E&M radiation.

Interestingly, although the assumption E = nhf might suggest EM radiation behaving as an integral number of particles of energy hf, he hesitated at the new frontier - others carried the revolution forward.


For the discovery, Plank was awarded the Nobel prize in 1918!!

(Albert Einstein 1905)

Albert Einstein postulated the existence of quanta of light -- **photons** -- which, when absorbed by an electron near the surface of a material, could give the electron enough energy to escape from the material.

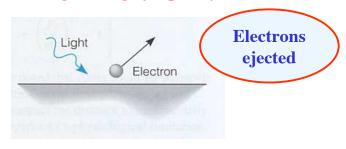


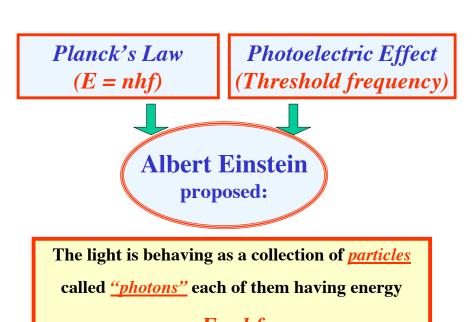
Phenomenon observed long time before Einstein, and something very strange was observed:

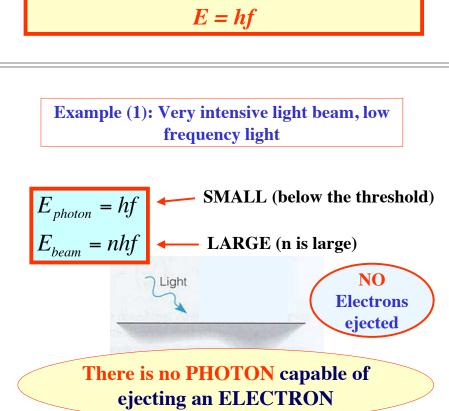
The Photoelectric Effect

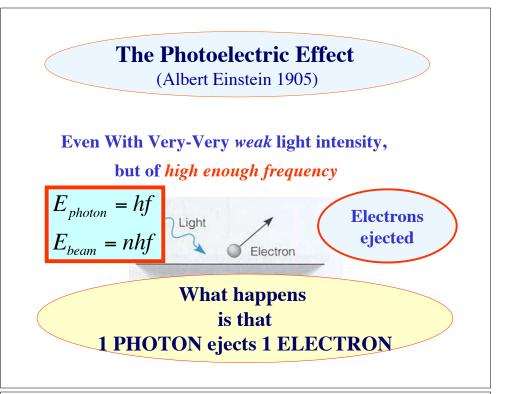
(Albert Einstein 1905)

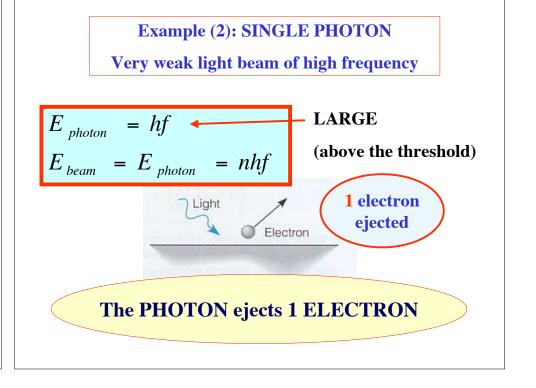
Even With Very strong light of low frequency




The Photoelectric Effect

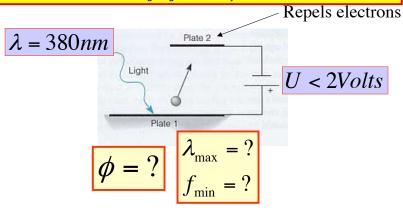

(Albert Einstein 1905)


Even With Very-Very weak light intensity,


but of high enough frequency

Energy Conservation:

$$E_{photon} = hf$$

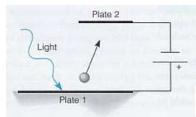

$$KE_{max} = hf - \phi$$

$$\phi$$

Example 2.1

Light of 380-nm wavelength is directed at a metal plate, plate 1 (Figure 2.1). To determine the energy of electrons ejected, a second metal plate, plate 2, is placed parallel to the first, and a potential difference is established between them. Photoelectrons ejected from plate 1 are found to reach plate 2 as long as the potential difference is no greater than 2.00 V. Determine (a) the work function of the metal, and (b) the maximum-wavelength light that can eject electrons from this metal.

Determine the max, wavelength light that can eject electrons from this metal.

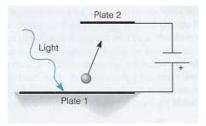


Also known at that time:

Metal	Work Function φ(in eV)
Potassium	2.2
Sodium	2.3
Magnesium	3.7
Zinc	4.3
Chromium	4.4
Tungsten	4.5

To free an electron from the metal, one has to "pay" a certain amount of energy

the Work Function



$$KE_{\text{max}} = hf - \phi$$

Solution

- Electrons are ejected from plate 1 with a certain max. KE.
- If none have enough KE to surmount the electrostatic PE difference (qV), no electrons will reach place 2.
- $qV ((=1.6x10^{-19} \text{ C}) (2V) = 3.2 \times 10^{-19} \text{ J} = 2 \text{ eV})$ is the max. that can be surmounted, so the max KE must be 2 eV.
- Using the equation,

$$3.20 \times 10^{-19} \text{ J} = (6.63 \times 10^{-34} \text{ J·s}) \left(\frac{3 \times 10^8 \text{ m/s}}{380 \times 10^{-9} \text{ m}} \right) - \phi$$

 $\Rightarrow \phi = 2.03 \times 10^{-19} \text{ J} = 1.27 \text{ eV}$

- Determine the max. wavelength (λ') light that can eject electrons from this metal.
- The limit of ejecting electrons occurs when an incoming photon has only enough energy to free an electron from the metal, with none left for KE.

$$0 = hf' - \phi = (6.63 \times 10^{-34} \text{ J·s}) \left(\frac{3 \times 10^8 \text{ m/s}}{\lambda'} \right) - 2.03 \times 10^{-19} \text{ J}$$

$$\Rightarrow \lambda' = 978 \text{ nm}$$

Problems

1. The work function of tungsten surface is 5.4eV. When the surface is illuminated by light of wavelength 175nm, the maximum photoelectron energy is 1.7eV. Find Planck's constant from these data.

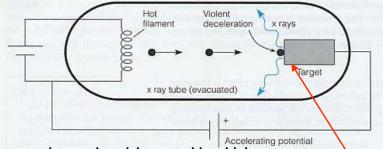
$$K_e = hf - W = h\frac{c}{\lambda} - W \qquad h = \frac{\left(K_e + W\right)\lambda}{c} = \frac{\left(1.7eV + 5.4eV\right) \times 1.75 \times 10^{-7} m}{3 \times 10^8 m/s} = 4.1 \times 10^{-15} eV \cdot s$$

$$= 4.1 \times 10^{-15} eV \cdot s \times 1.6 \times 10^{-19} J / eV = 6.6 \times 10^{-34} J \cdot s$$

- 2. The threshold wavelength for emission of electrons from a given metal surface is 380nm.
- (a) what will be the max kinetic energy of ejected electrons when λis changed to 240nm?
- (b) what is the maximum electron speed?

(a)
$$h\frac{c}{\lambda_0} = W$$
 $K_e = h\frac{c}{\lambda_1} - W = h\frac{c}{\lambda_1} - h\frac{c}{\lambda_0} = hc\left(\frac{1}{\lambda_1} - \frac{1}{\lambda_0}\right) = 1.9eV$
(b) $K_e = m_e v^2 / 2$ $v = \sqrt{\frac{2K_e}{m_e}} = 8.2 \times 10^5 m / s$

Problems

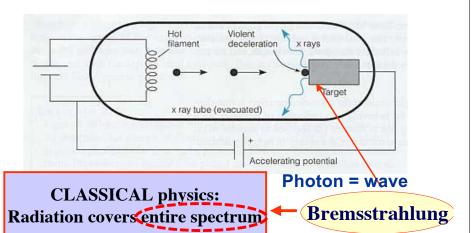

1. The work function of tungsten surface is 5.4eV. When the surface is illuminated by light of wavelength 175nm, the maximum photoelectron energy is 1.7eV. Find Planck's constant from these data.

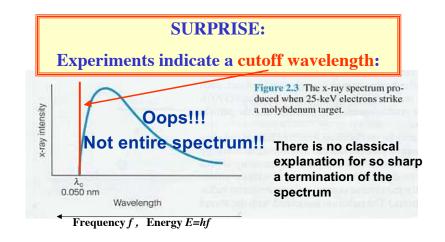
$$K_e = hf - W = h\frac{c}{\lambda} - W$$

The Production of X-Rays (Wilhelm Roentgen 1901)

(The "opposite" of the Photoelectric Effect)

We use the name X-rays for EM radiation whose wavelengths are in the 10^{-2} nm to 10 nm region of spectrum

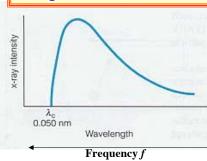



X-rays can be produced by smashing highspeed electrons into a metal target. When they hit, these decelerating charge produce much radiation, called...

Bremsstrahlung

The Production of X-Rays (Wilhelm Roentgen 1901)

(The "reverse" of the Photoelectric Effect)



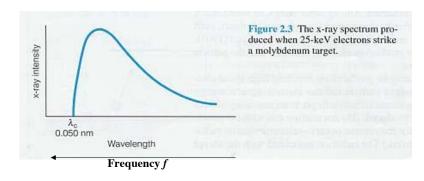
1 photon -> 1 electron

(?) 1 electron -> 1 photon (?)

Experiments indicate a cutoff wavelength:

 $25 \text{ keV} = h \frac{c}{\lambda}$

Figure 2.3 The x-ray spectrum produced when 25-keV electrons strike a molybdenum target.


If the radiation is quantized, the minimum E allowed at f is "hf" (single photon). We can't produce half a photon, so if multiple electrons don't combine their Es into a single photon, no photon could be produced of E > KE of a single electrons.

Setting the KE of an incoming electron

= E of one photon

INDEED:

$$\Rightarrow \lambda = \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s})(3 \times 10^8 \text{ m/s})}{(25 \times 10^3 \text{ eV})(1.6 \times 10^{-19} \text{ J/eV})} = 5.0 \times 10^{-11} \text{ m} = 0.050 \text{ nm}$$

INDEED:

1 electron -> 1 photon