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Chapter. 9
Statistical Mechanics

Outline:

n Historical Overview

n The Boltzmann Distribution
n Maxwell Velocity Distribution

n Equipartition Theorem

n Maxwell Speed Distribution
n Classical and Quantum Statistics

n Fermi-Dirac Statistics
n Bose-Einstein Statistics

n g(vx) dvx is the probability that the x component of a gas 
molecule’s velocity lies between vx and vx + dvx.

  if we integrate g(vx) dvx over all possible values of vx, it 
equals to 1

  then

n The mean value of vx

Maxwell Velocity Distribution

Why? – every molecule has a 
velocity component vx 
somewhere in this range

Performing the integral yields

With this distribution we can calculate the mean value of vx : 



Maxwell Velocity Distribution
n The mean value of vx2

                                           

at

n The velocity component distributes 
around the peak at vx = 0

The Maxwell velocity distribution as a 
function of one velocity dimension vx

Maxwell Velocity Distribution

n Of course there is nothing special about x-direction, so the results 
for the x, y, and z velocity components are identical.

n The mean translational kinetic energy of a molecule:

n We have just confirmed one of the principal results of the kinetic 
theory!!!

n Purely statistical considerations is good evidence of the validity of 
this statistical approach to thermodynamics.

Equipartition Theorem
n e.g. in a monatomic ideal gas (He), each molecule has

n There are 3 independent phase space coordinates (vx,vy,vz); 3 degrees 
of freedom.

n Mean kinetic energy is                             per molecule.                 

n In a gas of N helium molecules, the total internal energy is

n The heat capacity at constant volume is  

n For the heat capacity for 1 mole,

n The ideal gas constant R = 8.31 J/K.
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The Rigid Rotator Model
n For diatomic gases, consider the rigid rotator model.

n The molecule rotates about either the x or y axis.
n The corresponding rotational energies are 
n There are five degrees of freedom (three translational and two 

rotational).
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Equipartition Theorem

n In the quantum theory of the rigid rotator the allowed energy 
levels are

n From previous chapter, the mass of an atom is confined to a 
nucleus that magnitude is smaller than the whole atom.

  Iz is smaller than Ix and Iy.
  Only rotations about x and y are allowed.

n In some circumstances it is better to think of atoms connected to 
each other by a massless spring.

n The vibrational kinetic energy is 
n There are seven degrees of freedom (three translational, two 

rotational, and two vibrational).

1
2m dr dt( )
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Now, why don’t we include rotations about the z-axis? 

I = rotational inertia,  l = qnantum 
number equal to 0 or a positive integer

Molar Heat Capacity

n The heat capacities of diatomic gases are temperature dependent, 
indicating that the different degrees of freedom are “turned on” at 
different temperatures.

n Example of H2

Molar heat capacity cV as a 
function of temperature for 
H2, a typical diatomic gas. 

cV = 3R/2 @ low T, 
cV rises to 5R/2 @ higher T 
as the rotational mode is 
excited, and finally
cV approaches 7R/2 when 
the molecule dissociates @ 
very high T.

cV = 3
2 NAk = 3

2 R =12.5J K

9.4: Maxwell Speed Distribution

n Reminder: Maxwell velocity distribution:

 where we know that 

f _v( )d3_v = C exp 1
2βmv2( )d3_v

C’ = C1/3

9.4: Maxwell Speed Distribution

n Reminder: Maxwell velocity distribution:

 where we know that 

n Even though f(v) is a function of the speed (v) and not the velocity 
(v), this is a still a vector distribution because the probability eq 
contains the differential velocity element. 

n So, it is useful to turn this into a speed distribution F(v).
n F(v) dv = the probability of finding a particle with speed

between v and v + dv

f _v( )d3_v = C exp 1
2βmv

2( )d3_v



Maxwell Speed Distribution

n Suppose some distribution of particles f(x, y, z) exists in normal 
three-dimensional (x, y, z) space.

n The distance of the particles at the point (x, y, z) to the origin is

n the probability of finding a particle between
.

Maxwell Speed Distribution
n Now let us change to a radial distribution F(r).
n F(r) dr = the probability of finding a particle between r and r + dr.
n The volume of the spherical shell (space b/w r & r+dr ) is 4πr2 dr. 

  replace the coordinates x, y, and z with the velocity space 
coordinates vx, vy, and vz.

n Maxwell speed distribution:

It is only valid in the classical limit.

F v( )dv= 4πC exp − 1
2βmv2( )v2dv

f _v( )d3_v = C exp 1
2βmv2( )d3_v

F(v) dv = the probability of finding a particle with speed between v and v + dv

Velocity distribution

volume of spherical shell in velocity space

Maxwell Speed Distribution

n The most probable speed v*, the mean speed     , and the root-
mean-square speed vrms are all different.

The Maxwell speed distribution, 
expressed in terms of the most 
probable speed v*. 

Note the positions of v and vrms 
relative to v*.

Maxwell Speed Distribution
n Most probable speed (at the peak of the speed distribution):

n Mean speed (weighted average of all speeds in the distribution):

n Root-mean-square speed (associated with the mean kinetic energy):

n Standard deviation of the molecular speeds:

 σv in proportion to

v = 4πC 1
2 1

2βmv( )
2

#

$
%
%

&

'
(
(
= 8π βm

2π
)

*
+

,

-
.
3 2 1

βm
)

*
+

,

-
.

2

=
4
2π

kT
m



9.5: Classical and Quantum Statistics

n If molecules, atoms, or subatomic particles are in the liquid or 
solid state, the Pauli exclusion principle prevents two particles 
with identical quantum states from sharing the same space.

n There is no restriction on particle energies in classical physics. 
n There are only certain energy values allowed in quantum 

systems.

Classical Distributions

n Rewrite Maxwell speed distribution in terms of energy (rather than 
velocity).

n For a monatomic gas the energy is all translational kinetic energy. 

    

n With this, the speed distribution can be turned into an E distribution 
F(E)

 where

E = 1
2mv2

dE =mvdv

dv= dE
mv

=
dE
2mE

F v( )dv= 4πC exp − 1
2βmv2( )v2dv

Maxwell-Boltzmann energy 
distribution

Classical Distributions
n Boltzmann showed that the statistical factor exp(−βE) is a characteristic 

of any classical system.

n Thus, define the Maxwell-Boltzmann factor for classical system:

      A = normalization constant

n The energy distribution for classical system will have the form

q n(E) dE :  the number of particles with energies between  E and E + dE
q g(E) : know as density of states, is the number of states available per 

unit energy range

q FMB  : tells the relative probability that an energy state is occupied at a given 
temperature

Quantum Distributions
n Characteristic of indistinguishability that makes quantum 

statistics different from classical statistics.

n Suppose that we have a system of just 2 particles, each of which 
has an equal probability (0.5) of being in either of two energy 
states. 

n The possible configurations for distinguishable particles in either 
of two energy states:

n These 4 configurations are equally likely; therefore 
     the probability of each is one-fourth (0.25).

State 1 State 2
AB

A B

B A

AB



Quantum Distributions
n However, if the two particles are indistinguishable, our probability table 

changes:

n Only 3 equally likely configurations. The probability of each is one-third 
(~0.33).

n Because some particles do not obey the Pauli exclusion principle, two 
kinds of quantum distributions are needed.

n Fermions:
q Particles with half-spins that obey the Pauli principle.

n Bosons:
q Particles with zero or integer spins that do not obey the Pauli principle. 

State 1 State 2
XX

X X

XX

Quantum Distributions
n Fermi-Dirac distribution (valid for fermion):

 

 where

n Bose-Einstein distribution (valid for boson):

 

 Where

n In each case Bi (i = 1 or 2) is a normalization factor.

n Both distributions reduce to the classical Maxwell-Boltzmann 
distribution when Bi exp(βE) is much greater than 1.

  the Maxwell-Boltzmann factor A exp(−βE) is much less than 1.

FFD =
1

BFD exp βE( )+1

FBE =
1

BBE exp βE( )−1

Quantum Distributions

n The normalization constants for the distributions depend on the physical 
system being considered.

n Because bosons do not obey the Pauli exclusion principle, more bosons can 
fill lower energy states.

n Three graphs coincide at high energies – the classical limit.

  Maxwell-Boltzmann statistics may be used in the classical limit.

A comparison of the 3 distribution functions as a 
function of energy
The normalization constants A, BFD, and BBE have been 
set equal to 1 for convenience. 

The Bose-Einstein distribution is higher than the Fermi-
Dirac distribution, because bosons do not obey the 
Pauli principle. 

@ high energies, 3 distributions are close enough so 
that the classical Maxwell-Boltzmann distribution can 
be used to replace either quantum distribution.

Classical and Quantum Distributions


