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Chapter. 9
Statistical Mechanics

Outline:

= Historical Overview

= The Boltzmann Distribution

= Maxwell Velocity Distribution

= Equipartition Theorem

= Maxwell Speed Distribution

= Classical and Quantum Statistics
= Fermi-Dirac Statistics

= Bose-Einstein Statistics

| Maxwell Velocity Distribution

= g(v,) dv, is the probability that the x component of a gas
molecule’ s velocity lies between v, and v, + dv,.

— if we integrate g(v,) dv, over all possible values of v,, it

equals to 1 I Ly © 27 vz
velocity component v, I gvyav, =C' — =1
somewhere in this range —a0

Lm
1/2
Performing the integral yields C'= (ﬂ_m
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g(vx) dvx = eXp| —= ﬂmvx dvx
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then

With this distribution we can calculate the mean value of v, :




Maxwell Velocity Distribution

= The mean value of v,2

=C' J. exp( mvxzj dv
=2C" j exp( ﬁmvf)
1
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The Maxwell velocity distribution as a

dvx

g(vy)

2(0)

function of one velocity dimension v,

0.5¢(0)

= The velocity component distributes
2 around the peak atv, =0

at v, =Jl/m=~kT'/m,g(v,)= g(O)e’l/2

Maxwell Velocity Distribution

= Of course there is nothing special about x-direction, so the results
for the x, y, and z velocity components are identical.

= The mean translational kinetic energy of a molecule:

m

K = 1mv2 =1m(vx—2+ v—2+?) =1m[3kT) =§kT
2 2 Y 2 2

= We have just confirmed one of the principal results of the kinetic
theory!!!

= Purely statistical considerations is good evidence of the validity of
this statistical approach to thermodynamics.

Equipartition Theorem

= e.g.in a monatomic ideal gas (He), each molecule has
K=%m\f=%m(v§+ \f,+v§)

= There are 3 independent phase space coordinates (v,,vy,v,); 3 degrees
of freedom.

= Mean kinetic energy is 3(%kT) =3 kT per molecule.
= In a gas of N helium molecules, the total internal energy is

U= NE = 3 NKT

= The heat capacity at constant volume is CV = %Nk

= For the heat capacity for 1 mole,

¢, = 3N k=3R=125JK

= The ideal gas constant R = 8.31 J/K.

The Rigid Rotator Model

= For diatomic gases, consider the rigid rotator model.

b

Oxygen atom

X

Rigid connector
(massless)

2 Oxygen atom

= The molecule rotates about either the x or y axis.
1 w?andl/
= The corresponding rotational energies are 2/ x¥x ywy

= There are five degrees of freedom (three translational and two
rotational).




Equipartition Theorem Molar Heat Capacity

Now, why don’t we include rotations about the z-axis?
= In the quantum theory of the rigid rotator the allowed energy = The heat capacities of diatomic gases are temperature dependent,
levels are A SISV | - otational inertia, / = gnantum indicating that the different degrees of freedom are “turned on” at
E==-= number equal to 0 or a positive integer different temperatures.

¢,=3Nk=3R=125JK

21 21
= From previous chapter, the mass of an atom is confined to a = Example of H,
nucleus that magnitude is smaller than the whole atom. P S - Molar heat capacity cy as a

function of temperature for
H,, a typical diatomic gas.

— [, is smaller than /, and /,.
— Only rotations about x and y are allowed.

_________ \_/l_b_rzfti(in_ i cy=3R2 @ low T,
= In some circumstances it is better to think of atoms connected to <, QR ¢ rises to SR/2 @ higherT
each other by a massless spring. g Rotation as the rotational mode is
. . . . . 2 . [ excited, and finally
= The vibrational kinetic energy is %m(dr / O't) T ¢y approaches 7R/2 when
e B the molecule dissociates @

= There are seven degrees of freedom (three translational, two Trmdkiicn

rotational, and two vibrational). very high T.
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9.4: Maxwell Speed Distribution 9.4: Maxwell Speed Distribution

= Reminder: Maxwell velocity distribution: = Reminder: Maxwell velocity distribution:
(V) V= Cexp(18mV )dv f(V) V= Cexp(18mV )dv
3/2 3/2
where we know that ~_ (C) = [ﬂ_m) where we know that ~_ (€ = (ﬂ_’"j
2r 2z
- ]E)efi”i{ivihcity distribuiontunciien J G)' _ . = Even though f(v) is a function of the speed (v) and not the velocity
(v) 2V pmba?"'ty otf'"d';'? B particle withivelocity (v), this is a still a vector distribution because the probability eq
BENEENLV and v+ 4V contains the differential velocity element.

her: 3=
where d”v=dv, dv, dv, ® = So, it is useful to turn this into a speed distribution F(v).
= Maxwell proved that the probability distribution function is 7mg(vx) v, ’

proportional to exp(-} m/ /kT) 1 = F(v) dv = the probability of finding a particle with speed

h N\ 3 " 172
Therefore, we may write f(¥) d*v =C exp (-3 fmv’) dv cr_(Bm between vand v + dv
where C is a proportionality factor and 8= (k7).
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Maxwell Speed Distribution

= Suppose some distribution of particles f(x, y, z) exists in normal
three-dimensional (x, y, z) space.

= The distance of the particles at the point (x, y, z) to the origin is
;e (x2 +y2 + 22)1/2

= f(x.y,2) d°F =|ieiprobabilityier findingaiparticle between

I and 7 + d°F with d°F = dx dy dz|

Maxwell Speed Distribution
= Now let us change to a radial distribution F(r).
= F{(r) dr = the probability of finding a particle between r and r + dr.
= The volume of the spherical shell (space b/w r & r+dr ) is 4112 dr.
F(r)dr = f(x,y,z)4zr* dr
— replace the coordinates x, y, and z with the velocity space
coordinates v, v,, and v,.

— F(V)dv= f(\17 4zv* dv
| f(v) - Cexp(%ﬁmf)d?v| )

Velocity distribution

volume of $pherical shell in velocity space

v,

" xwell speed distribution:

F (v)dv=4nCexp(-1m/ )Vav

It i only valid in the classical limit.

F(v) dv = the probability of finding a particle with speed between v and v + dv

Maxwell Speed Distribution

v Yrms
F(v) v* vF

probable speed v*.

Note the positions of v and Vs
relative to v*.

Maxwell speed distribution

. | | | | v
0 0.5 1.0 1.5 2.0 v*

Relative speed

= The most probable speed v*, the mean speed ;, and the root-
mean-square speed v, are all different.

— The Maxwell speed distribution,
— expressed in terms of the most

Maxwell Speed Distribution
= [Mostiprobable’speed|(at the peak of the speed distribution):

\/* [2kT
v =
pm

= Mean'speed|(weighted average of all speeds in the distribution):

*=4”C{ /m/)J (g:)w(ﬂm)z \/_\F

= ROot'meansquare’speed|(associated with the mean kinetic energy):
_(A)2 o 3kT

rms_(
m

- 12 1/2 12
o, = (V- v = (%—T—%—Tj = {3 — (—H [k—Tj ~0.48v*
m m V4 m

g, in proportion to T




9.5: Classical and Quantum Statistics

= If molecules, atoms, or subatomic particles are in the liquid or
solid state, the Pauli exclusion principle prevents two particles
with identical quantum states from sharing the same space.

= There is no restriction on particle energies in classical physics.

= There are only certain energy values allowed in quantum
systems.

Classical Distributions

= Rewrite Maxwell speed distribution in terms of energy (rather than

locity).
veloc) F(v)dv=F(E)dE

= For a monatomic gas the energy is all translational kinetic energy.

E=1m#
dE =nmvadv
_GE__&E_ F (v)dv=4rxCexp(-18mV/ Vay
mv J2mE
= With this, the speed distribution can be turned into an E distribution
F(E) Fv)ydv=F(E)dE
87l'C 1/2) Maxwell-Boltzmann energy
where F(E) = \/5 3/2 exp( ﬂE)E distribution

Classical Distributions |r)- ji”f,zexp( _BE)EM?

= Boltzmann showed that the statistical factor exp(-SE) is a characteristic
of any classical system.

= Thus, define the Maxwell-Boltzmann factor for classical system:
IF_MB =4 exp(—,BE)l

A = normalization constant

= The energy distribution for classical system will have the form

n(E) = g(E)Fyg

o n(E)dE : the number of particles with energies between E and E + dE
a g(E) : know as density of states, is the number of states available per
unit energy range
o Fyg : tells the relative probability that an energy state is occupied at a given
temperature

‘ Quantum Distributions

= Characteristic of indistinguishability that makes quantum
statistics different from classical statistics.

= Suppose that we have a system of just 2 particles, each of which
has an equal probability (0.5) of being in either of two energy
states.

= The possible configurations for distinguishable particles in either
of two energy states:

State 1 | State 2

AB
) . . A B
= These 4 configurations are equally likely; thereforeg B A

the probability of each is one-fourth (0.25). AB




‘ Quantum Distributions

= However, if the two particles are indistinguishable, our probability table

changes:
State 1 | State 2
XX
X X

XX

= Only 3 equally likely configurations. The probability of each is one-third
(~0.33).

= Because some particles do not obey the Pauli exclusion principle, two
kinds of quantum distributions are needed.

= Fermions:
o Particles with half-spins that obey the Pauli principle.

= Bosons:
o Particles with zero or integer spins that do not obey the Pauli principle.

‘ Quantum Distributions

= Fermi-Dirac distribution (valid for fermion):
n(E) = g(E)Frp

1
B, exp(BE)+1
= Bose-Einstein distribution (valid for boson):
n(E) = g(E)

where D

1
Fopg=— ——— 8zC
Where 766 = g exp(BE)-1 F(E) = WGXp(—ﬂE)E”Z
= In each case B; (i = 1 or 2) is a normalization factor. T

= Both distributions reduce to the classical Maxwell-Boltzmann
distribution when B; exp(BE) is much greater than 1.

—> the Maxwell-Boltzmann factor A exp(-fE) is much less than 1.

‘ Quantum Distributions

A comparison of the 3 distribution functions as a 1.0} . Bose-Einstein Fyy
function of energy \ /

The normalization constants A, Brp, and Bge have been n

set equal to 1 for convenience.

\ Maxwell-Boltzmann Fyy

The Bose-Einstein distribution is higher than the Fermi-
Dirac distribution, because bosons do not obey the
Pauli principle.

Statistical Factor F

@ high energies, 3 distributions are close enough so
that the classical Maxwell-Boltzmann distribution can

be used to replace either quantum distribution. 0 kT 2kT  3kT  4kT

Energy £
= The normalization constants for the distributions depend on the physical
system being considered.

= Because bosons do not obey the Pauli exclusion principle, more bosons can
fill lower energy states.

= Three graphs coincide at high energies — the classical limit.
—— Maxwell-Boltzmann statistics may be used in the classical limit.

Classical and Quantum Distributions

9.2 Classical and Quantum Distributions

Properties of the Distribution
Distributors Distribution Examples Function
Maxwell- Particles are Ideal gases Fys = A exp(—BE)
Boltzmann identical but

distinguishable

1

Bose-Einstein  Particles are Liquid *He, Fy = B exo(BE) — 1

identical and photons s <Xp(BE)

indistinguishable

with integer spin
1

Fermi-Dirac Particles are identical ~ Electron gas foyy = —————7—
Brp exp(BE) + 1

and indistinguishable  (free electrons
with half-integer spin  in a conductor)




