PHYS 3301 - Lecture Notes & Homework [3]
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Hi PHYS-3301 students,

Two announcements:
1. Homework [3] :: Chapter 5 :: 24, 28, 31, 34, 50, 57, 59 (due: Oct 17)
2. Lecture notes are posted on the web: http://www.phys.ttu.edu/~slee/3301/

Lecture 13

Cheers,
Sung-Won
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. . —— DEPARTMENT OF
Important reminder, we will take our departmental photo today, October 8™, at PHYSICS &
promptly 9:20am out on the front steps of the Science building. We haven’t ASTRONOMY
taken a department photo since 2019. We strongly hope you will join us to Physics & Astronomy
Colloquium

freeze frame out time as a Physics & Astronomy family!

Professor Benjamin Rose
Baylor University

3:30 - 4:30 p.m. | Tuesday, Oct. 8
Science Building 234
Supernova Cosmology and the Nancy
Grace R Sp Tel P
Type la Supernovae (SN la) have been used as cosmic distance
probes for over 30 years. They showed the first evidence of Dark
Energy and the accelerated expansion of the Universe. They
have also been a key part of measuring the current expansion
rate (the Hubble constant, HO) to less than 1% precision. Though
SN la are a well-tested cosmic probe, they are also a part of
several controversies, namely the disagreement of the measured
and predicted values of HO and the lack of a physical model for
Dark Energy. Recent SN la data sets have made stringent
measurements of Dark Energy and HO but there are both

and instrt 1 i to continuing to
improve our measurements. In this talk, | will describe my
research into improving our ical models and

calibration in preparation for the SN la data sets into the 2030s,
particularly from NASA's next flagship mission, the Nancy Grace
Roman Space Telescope.
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The 2024 Nobel Prize in Physics :: Machine Learning with
= Artificial Neural Networks using Physics
« Lee, Sungwon

a
99

To: - Lo
Dear all,

The 2024 Nobel Prize in Physics was awarded to John J. Hopfield and Geoffrey E. Hinton “for
foundational discoveries and inventions that enable machine learning
with artificial neural networks”.

Machine learning has long been important for research, including the sorting and analysis of vast
amounts of data. John Hopfield and Geoffrey Hinton used tools from physics to construct methods
that helped lay the foundation for today’s powerful machine leaning. In announcing the prize, the
Nobel committee described Hopfield and Hinton’s work as not just helping advance research across
different fields of physics — from material science to particle physics to astrophysics — but as
something that was already changing daily life, with technology including facial recognition and
language translation building off of the research.

Press release: https:/www.n

re/prizes/physics/2024/press-release/

Scientific http: clprize.org/uploads/2024/09/advanced-
physicsprize2024.pdf
Popular https://www.nobelprize.org/uploads/2024/10/ If h prize2024.pdf

Happy reading!

Outreach Outre Physics this year.
John J. Hopfield Geoffrey E. Hinton Cheers,

Sung-Won
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Sung-Won Lee, PhD | Professor and Department Chair
Department of Physics and Astronomy | Texas Tech University
s 79409-1051
Dttu.edu

806.834.8188 | sungwon
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The Nobel Prize in Physics 2024 was awarded to
John J. Hopfield and Geoffrey E. Hinton "for
foundational discoveries and inventions that
enable machine learning with artificial neural
networks"

Chapter. 6

Unbound States

Outline:

* The Potential Step

* The Potential Barrier & Tunneling
* Alpha Decay & Other Applications
+ Particle-Wave Propagation

Potential Wall

A free electron encounters a
potential step that is

classically surmountable.
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n this region, the quantity in brackets is the negative constant — 2mE/h 2.
In th g the quantity in brackets is the negative constant — 2mE/f
As noted, to distinguish right-moving from left-moving particles, we do not
choose sin(kx) and cos(kx) as we did in the potential well, but rather

(x) = Ae ik 4 Be~ikx where k =
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~ proportional to the
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per unit distance on
the left of the step and
moving to the right
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In this region, the quantity in brackets in equation (5-1) is the negative con-
stant — [2Zm(E — Uy)/h2]. (It has been rearranged merely as a convenience.)
An appropriate solution would seem to be Ce ik where k' =
V2m(E — Uy)/fi2. But there is a physical argument against one of these
functions. Beyond x = 0, there is no change in potential energy—no force
to cause a wave moving to the right to reflect. Because there can thus be
no left-moving wave in this region, ¢ ~** is physically unacceptable.
Therefore,

2m(E — Uy)
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Smoothness

The combined wave function must be smooth. We have found its pieces,
and we must ensure that they match as they should.
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Finally, we express the Prob. in terms of U0 & E *using the definitions of k, k’)
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An electron whose kinetic energy is 5 eV encounters a 2-¢V potential step.
What is the probability that it will be reflected?

Solution
The electron’stotatemergy is its initial kinetic energy of 5 eV (since it starts by
convention where U = 0), and U,, is given to be 2 eV,
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The wave function here is the same as before: lx) = GO = Dess Rwihereloe = Py B2 W
S : 2mE
i (x) = Aet*r 4 Be ik where k = PE
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However, the region to the right of the step extends forever, so
we must throw out e**x since it diverges as x > + infinity.
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Exponentially decaying
wave function outside the
wall has the form

alxl = 1, where x =
distance from wall
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If E < U0-» wave is totally reflected. “Penetration m
When E > U0-> R falls rapidly with
depth”
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6.2 The Potential Barrier

&
Tunneling

* Tunneling is one of the most important & startling
ideas in QM.

* The simplest solution is a potential barrier, a PE
jumps that is only temporary.

+ If a particle’s E < Barrier’s height.
it should not get through - classically

Potential Barrier

Experimental
setup

Energy
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The solution is the same here as for the potential step.
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Resonant Transmission
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