Summary

Time-independent Schrödinger equation

\[-\frac{\hbar^2}{2m} \nabla^2 \psi(r) + U(r)\psi(r) = E\psi(r)\]

Hydrogen atom potential energy

\[U(r) = -\frac{1}{4\pi \epsilon_0} \frac{e^2}{r}\] \hspace{1cm} (6-9)

Hydrogen atom wave function

\[\psi(r, \theta, \phi) = R(r)\Theta(\theta)\Phi(\phi)\]

\[E = -\frac{me^4}{2(4\pi \epsilon_0)^2 \hbar^2 n^2} \quad (n = 1, 2, 3, \ldots)\]

\[|L| = \sqrt{\ell(\ell + 1)} \hbar \quad (\ell = 0, 1, 2, \ldots, n - 1)\]

\[L_z = m_l \hbar \quad (m_l = 0, \pm 1, \pm 2, \ldots)\]

Quantized so far:

The projection of angular momentum to z-axis

\[L_z = m_l \hbar \quad (m_l = 0, \pm 1, \pm 2, \ldots)\]

The magnitude of (orbital) angular momentum

\[|L| = \sqrt{L^2} = \sqrt{\ell(\ell + 1)} \hbar \quad (\ell = 0, 1, 2, \ldots)\]

The radial part of Schrödinger equation for hydrogen atom

\[\frac{1}{R} \frac{\partial}{\partial r} \left(r^2 \frac{\partial R}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Theta}{\partial \theta} \right) + \frac{\cos^2 \theta}{\sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2} = -\frac{2m(E - U(r))}{\hbar^2}\]

\[\frac{1}{R} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) - \ell(\ell + 1) = -r^2 \frac{2m(E - U(r))}{\hbar^2}\]
The radial equation is called the associated Laguerre equation and the solutions \(R \) that satisfy the appropriate boundary conditions are called associated Laguerre functions.

Energy quantization

The principal quantum number \(n \)

\[
E = -\frac{me^4}{2(4\pi\varepsilon_0)^2\hbar^2 n^2} \quad \text{(where } n = 1, 2, 3, \ldots \text{)}
\]

\(\ell = 0, 1, 2, \ldots, n - 1 \) and \(\ell \) must obey

Quantum number \(l \) is limited to \((n-1)\)

Bohr Radius

\[
a_0 = \frac{(4\pi\varepsilon_0)\hbar^2}{me^2} = 0.0529 \text{ nm}
\]

How Small is “Small”?
Quantum numbers

\[\ell = 0, 1, 2, \ldots, n - 1 \]
\[m_\ell = 0, \pm 1, \pm 2, \ldots, \pm \ell \]

Because of \(1/r \)

Energy

\[n \]
\[\ell \]
\[m_\ell \]

\[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 1 \\
2 & 0 & -1 & 0 & +1 & 0 & -1 & \ldots & 0 & \ldots & n - 1 \\
3 & 0 & -1 & 0 & +1 & 0 & -1 & \ldots & 0 & \ldots & n - 1 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
n & 0 & -1 & 0 & +1 & 0 & -1 & \ldots & 0 & \ldots & n - 1 \\
\end{array} \]

Degeneracy

\[\begin{array}{cccccc}
1 & 4 & 9 & \ldots & n^2 \\
\end{array} \]

Probability Density and Normalization

\[|\Psi(r, \theta, \phi)|^2 = |\psi(r, \theta, \phi)|^2 = (R(r)\Theta(\theta)\Phi(\phi(t)))^2 (R(r)\Theta(\theta)\Phi(\phi(t))) \]

Total Prob. of finding electron somewhere in space must be “1”. Using the volume element in spherical polar coordinate (see 7-4), normalization condition becomes...

Hydrogen Atom Radial Wave Functions

<table>
<thead>
<tr>
<th>(n, \ell)</th>
<th>(R_{n, \ell}(r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 0</td>
<td>(\frac{1}{a_0} e^{-r/a_0})</td>
</tr>
<tr>
<td>2, 0</td>
<td>(\frac{1}{2a_0} \left(1 - \frac{1}{2a_0} \right) e^{-r/2a_0})</td>
</tr>
<tr>
<td>2, 1</td>
<td>(\frac{1}{2a_0} r e^{-r/2a_0})</td>
</tr>
<tr>
<td>3, 0</td>
<td>(\frac{1}{3a_0} \left(1 - \frac{2}{3a_0} \right) e^{-r/3a_0})</td>
</tr>
<tr>
<td>3, 1</td>
<td>(\frac{1}{6a_0} \left(1 - \frac{3}{3a_0} \right) e^{-r/3a_0})</td>
</tr>
</tbody>
</table>

Associated Leguerre Equation: \(R(r) = A e^{-r/a_0} \), \(\frac{d^2R}{dr^2} + \frac{2}{r} \frac{dR}{dr} - \ell(\ell + 1) = \frac{2m(E - U(r))}{\hbar^2} \)

Table 6.6 Angular Solutions (Spherical Harmonics)

<table>
<thead>
<tr>
<th>(\ell, m_\ell)</th>
<th>(\Theta_{\ell, m_\ell}(\theta) \Phi_{\ell, m_\ell}(\phi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0</td>
<td>(\sqrt{\frac{2}{\pi}})</td>
</tr>
<tr>
<td>1, 0</td>
<td>(\sqrt{\frac{3}{2\pi}} \cos \theta)</td>
</tr>
<tr>
<td>1, 1</td>
<td>(\sqrt{\frac{3}{2\pi}} \sin \theta \cos \phi)</td>
</tr>
<tr>
<td>2, 0</td>
<td>(\sqrt{\frac{5}{2\pi}} (3 \cos^2 \theta - 1))</td>
</tr>
<tr>
<td>2, 1</td>
<td>(\sqrt{\frac{5}{2\pi}} \cos \theta \sin \phi)</td>
</tr>
<tr>
<td>2, 2</td>
<td>(\sqrt{\frac{15}{2\pi}} \sin^2 \theta \cos^2 \phi)</td>
</tr>
<tr>
<td>3, 0</td>
<td>(\sqrt{\frac{7}{2\pi}} (5 \cos^3 \theta - 3 \cos \theta))</td>
</tr>
<tr>
<td>3, 1</td>
<td>(\sqrt{\frac{15}{2\pi}} (5 \cos^3 \theta - 3 \cos \theta) \sin \phi)</td>
</tr>
<tr>
<td>3, 2</td>
<td>(\sqrt{\frac{21}{2\pi}} \cos \theta \sin^2 \phi \cos \phi)</td>
</tr>
<tr>
<td>3, 3</td>
<td>(\sqrt{\frac{35}{2\pi}} \sin^3 \theta \cos \phi \sin \phi)</td>
</tr>
</tbody>
</table>

\[\csc \theta \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta(\theta)}{d\theta} \right) - m_\ell^2 \csc^2 \theta \Theta(\theta) = -\ell(\ell + 1)\Theta(\theta) \]
Now, we can discuss where hydrogen’s e might be found.

Traditional naming scheme

Spectroscopic notation

<table>
<thead>
<tr>
<th>Letter</th>
<th>s</th>
<th>p</th>
<th>d</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of ℓ</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

s: sharp, p: principle, d: diffuse, f: fundamental...

- 3d state: $n=3$ & $l = 2$
- 2p state: $n=2$ & $l = 1$

Electron Prob. Densities in the Hydrogen atom, through $n = 3$

State are labeled using spectroscopic notation: n, l

2d state is possible? No!!

Because, here, $n=2$, $d =2$; Remember $n > d$

Spectral Lines

Hydrogen’s energies & spectral lines;

A photon is emitted when the electron jumps downward.

$$E_i = E_f$$

$$E_i - E_f = \frac{me^4}{2(4\pi\varepsilon_0)^2\hbar^2} \frac{1}{n_i^2} - \frac{me^4}{2(4\pi\varepsilon_0)^2\hbar^2} \frac{1}{n_f^2}$$

$$= \frac{me^4}{2(4\pi\varepsilon_0)^2\hbar^2} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

For a photon, $E = hf = h\nu$. Therefore,

$$\frac{hc}{\lambda} = \frac{me^4}{2(4\pi\varepsilon_0)^2\hbar^2} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

or

$$\frac{1}{\lambda} = \frac{me^4}{2(4\pi\varepsilon_0)^2\hbar^2hc} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

$$= 1.097 \times 10^7 \text{ m}^{-1} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$
Chapter. 8
Spin & Atomic Physics

Outline:
- Evidence of Angular Momentum Quantization
- Identical Particles
- The Exclusion Principle
- Multi-electron Atoms & the Periodic Table
- Characteristic X-Rays

It’s open said that in Q.M. there’re only 3 bound-state problems solvable (w/o numerical approximation tech.)
Most real application: multiple system. so, let’s start an atom with multiple electrons

\[
L_{\text{Ground State}} = \sqrt{l(l+1)}\hbar = 0
\]

\[
L_s = \sqrt{l(l+1)}\hbar = 0
\]

\[
L_p = \sqrt{l(l+1)}\hbar = \sqrt{2}\hbar
\]
Ground State:

The Electron is **NOT** Orbiting around the proton

Classical Physics:

The Electron is Orbiting around the Proton

Orbiting in Classical Physics

Potential energy of a dipole μ in a magnetic field B

$$U = -\mu \cdot B$$

$$\mu = eIA = \frac{e}{T} \pi r^2 = \frac{e}{2\pi r^2} \pi r^2 = \frac{e}{2} vr = \frac{e}{2m_e} (m_e vr)$$

$$\mu_L = -\frac{e}{2m_e} L$$

Magnetic Dipole Moment

Conventional current is opposite to electron motion

$\mu = IA$

$L = \mathbf{r} \times \mathbf{p}$

Fundamental charge

Period of revolution

A charge with angular m/m has a magnetic dipole moment

Magnetic force on a system with dipole moment μ

$$F = -\nabla(-\mu \cdot B) = \nabla(\mu_x B_x + \mu_y B_y + \mu_z B_z)$$

U

F can be measured

$F = \text{negative gradient of potential energy}$
The Stern-Gerlach Experiment

An atom with a magnetic dipole moment passing through a non-uniform B-field

Classical Expectation

\[F = \frac{\partial B_z}{\partial z} \hat{z} \]

Quantum Theory Expectation

Important factor governing the effect of B-field; so, magnetic quantum #

Ground State -> \(l = 0 \) -> \(L = 0 \) -> \(F = 0 \)
Ground State -> \(l = 0 \) -> \(L = 0 \) -> \(F = 0 \) (???)

Surprise: Real Experimental Result

The Solution:

INTRINSIC MAGNETIC MOMENT and ANGULAR MOMENTUM called “SPIN”

is “carried” by every electron

\[
\mu_S = -g_e \frac{e}{2m_e} S \quad (g_e \approx 2)
\]

Like for \(L \):

\[
L = \sqrt{\ell (\ell + 1) \hbar}
\]

Intrinsic angular momentum:

\[
S = \sqrt{s(s + 1) \hbar}
\]

\(s \) – the quantum number of SPIN

Intrinsic property of a particle