
Texas Tech University Department of Physics & Astronomy
Astronomy 2401 Observational Astronomy

Lab 7 :- Stop Lights and Astronomical Statistics

Statistics are an important element of astronomical data analysis, and indeed scientific
data analysis in general. The purpose of this lab is to gain familiarity with some of the
fundamental concepts in statistics using an everyday application. Specifically, this lab will
focus upon (1) calculating the mean and standard deviation for a set of observations, (2) the
Poisson distribution, (3) χ2 minimization, and (4) least squares fitting. The instructions for
the lab are given below, and at the end you will also find an appendix providing important
information about each of these concepts. Working with a partner is recommended, especially
for the data collection, but not required. You should not work in groups larger than two
people.

The concept for this lab is straightforward. When you observe at Skyview you are using
a CCD camera to count photons, which obey a Poisson distribution. In class it was men-
tioned that many everyday occurrences, such as the number of cars that make it through a
stop light, also obey this distribution. For this lab you will test this particular example and
confirm (or refute) the hypothesis. The detailed plan for the lab is given below. Please read
through the entire lab before beginning. For the calculations required in the analysis, you
may find it easiest to use a spreadsheet program like Excel or Google Sheets. However, if
you are already familiar with a programing/data analysis language, you may use that as well.

Observational Procedure:

1. Find an intersection with a stop light at which you can observe traffic. This intersection
should be sufficiently busy that you see at least few cars drive through every green light.
Clearly record the location of the intersection in your notebook.

2. Pick a traffic direction (recording the direction) and count the number of cars that
make it through the intersection on a green light. Record the time and number.

3. Repeat the measurement in the previous step eight times, recording all the data. This
should be done for consecutive green lights – it is recommended that you work in
pairs so that one person can count while the other records. These data will be used to
determine the mean and standard deviation for the number of cars passing through the
intersection, and also to test whether the Poisson distribution is a good approximation.

4. Now, the amount of traffic obviously changes over the course of the day (e.g. rush
hour). One can ask how the mean number of cars passing through the intersection is
changing with time. Equivalently, in astronomy one may wish to track how the flux
from a variable star changes with time. For this lab, we will ask the specific question
of how much the traffic changes over the course of about two hours, and assume that
the change is linear with time. To do so, repeat the observations from the previous
steps 45 minutes and 1.25 hours after the start of your initial observations. For these
repeat observations it is sufficient to only make four measurements rather than eight.
You are welcome to make observations that are either more frequent or span a longer
time baseline, but should include the observations listed above.

Analysis Procedure:
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1. For the first epoch of observation (the one with eight measurements) calculate the
mean and standard deviation for the number of cars passing the intersection.

2. Use χ2 minimization to (a) determine the optimal value for µ in the Poisson distribution
equation, and (b) test whether the distribution of your observations is consistent with a
Poisson distribution. An explanation of the χ2 test is given in the appendix. Normally
for the minimization you would use some numeral process to actually find the global
minimum value, however, for this lab it is sufficient to do the minimization by manual
inspection. The basic idea though is to compute χ2 and the reduced χ2 for different
values of µ near the mean – the one with the lowest χ2 corresponds to the most probable
value for the average number of cars passing through the intersection (if you were to
observe this very many times). Additionally, if the distribution is Poisson, then for N
observations the value of the reduced chi-squared, χ2/(N − 1), should be close to 1.0.
If the reduced chi-squared is sufficiently larger, then a Poisson distribution is a bad
approximation.

3. Plot a histogram showing the distribution of values recorded. Overlaid on the same
plot, or in a separate plot, draw the number expected for a Poisson distribution with
the optimal value of µ from the previous part. Be sure to label you axes completely!

4. Calculate the mean and standard deviation for the two later epochs. Using the mean
for the three epochs, perform an unweighted linear least squares fit to the data to
determine dN/dt, the change in the number of cars per light as a function of time. The
time, t, should be expressed in hours (i.e. you should set the first time (T0) equal to
0, then time 2 (T1) equal to T1 − T0. Plot the data points and best fit line.

5. In your write-up you should also discuss any factors that might have influenced your
results, and how they might have done so (for instance, the duration of lights often
changes during the rush hour period). You should also turn in any code/spreadsheet
you use to do your calculations.

Appendix

Mean, median, and standard deviation
The mean, or average, value for a sample of size N is given by

µ =< x >=

∑N
i=1 xi
N

. (1)

The median for a sample is the value where half the data points have larger values and
half have smaller. For a sample with an even number of data points, the median can be
taken to be the average of the middle two points. For example, given the values 1,4,7,9 the
median would be (4+7)/2=5.5.

The standard deviation is calculated using the mean. The equation for standard
deviation is

σ =

(∑
i(xi − µ)2

N − 1

)1/2

. (2)
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Poisson distribution

The Poisson distribution is of fundamental importance in astronomy. Essentially,it quan-
tifies how many times an event is likely to happen in a given amount of time. It is applicable
when the the number of times the event can occur is always a non-negative integer. For in-
stance, you can only have zero or a positive integer number of photons strike your detector.
The mathematical equation for the Poisson distribution is:

P (k|µ) =
exp(−µ)µk

k!
, (3)

where µ is the average number of occurences per interval, and P (k|µ) is the probability of
observing k occurences in a given interval, given that the average is µ .

Chi-squared (χ2) minimization

A common question in data analysis is whether the chosen model (in this case a Poisson
distribution) is a good description of the data. Also, given a model for the data, one would
like to determine which model parameters best describe the data. For instance, what value
for µ in the Poisson distribution equation gives a distribution most consistent with the
observations. The standard method for addressing both of these questions is called a χ2

analysis.
If each data point (yi) has it’s own known standard deviation (σi), then the quantity χ2

is defined as

χ2 =
N∑
i=1

(
yi − y
σi

)2

, (4)

where y is value predicted by your model. One can understand physically what’s going on by
looking at the equation. You want the difference from your model to be as small as possible
relative to the measurement uncertainty, and by adding up the squares of these differences
you get a measure of the total amplitude of deviations from the model. The model parameters
that give the lowest value of χ2 provide the best description of the data because the deviations
from the predicted values are smallest.

For a concrete example, consider the Poisson distribution. In this case, the uncertainties
are the square root of the expected number of times you observe a given value k. This
expected number is simply N ×P (k|µ), where N is the total number of observations. χ2 for
the Poisson distribution therefore becomes

χ2 =
∞∑
k=0

nk −N × P (k|µ)√
N × P (k|µ)

2

, (5)

where nk is the number of times that you observe k events (i.e. k cars), and N is the total
number of observations. One can then determine the best value of µ by minimizing χ2.

Now, if your model is appropriate and your uncertainties are measured correctly then
on average your measurements should differ from the predicted values by about 1σ, which
means that χ2 is roughly one for each data point. If one defines a quantity called the reduced

3



chi-squared (χ2
ν),

χ2
ν =

χ2

N −m
, (6)

where N is the number of observations and m is the number of variables being fit in the
model. For this lab the only variable being fit is µ, so m = 1. If the model is a good
description to the data then you should get χ2

ν ' 1.
If you get a value for reduced chi-squared that is much larger than one, then either your

errors are underestimated or the model is a bad description to the data. If you get a value
that is much less than one, then your errors are likely overestimated. In our case, since the
errors are assumed to be Poisson so large values of reduced chi-squared must be due to the
Poisson distribution being a bad choice of model.

Linear Least Squares Fitting

Linear least squares fitting is a specific application of χ2 analysis. The idea is that you
want to fit a line, y = ax+ b to your observations and get the best possible estimate for the
slope (a) and zeropoint (b). For this particular lab, you will be obtaining mean values for
the number of cars going through the stop light at three different times, so x = time and
y = number of cars. If you have recorded the time for every observation, you could fit all
the data points independently. It is sufficient for this lab though to simply determine the
average number of cars during each interval and the standard deviation of your observations
during each interval.

The equation for χ2 becomes

χ2 =
N∑
i=1

(
y − yi
σi

)2

=
N∑
i=1

(
ax+ b− yi

σi

)2

. (7)

One finds the best fit to the data by selecting the values of a and b that minimize χ2. This
approach is called a weighted linear least squares fit. If the errors on all the measurements
are the same (σi constant), then all data points are given equal weight. In this case the fit
is referred to as an unweighted linear least squares fit.

Practical Considerations

For the analysis portion of this lab you will probably find it easiest to do the calcula-
tions in Excel. Excel has functions that will compute the mean, standard deviation, and
Poisson distribution. For the last of these, the function is POISSON and the expression
POISSON(x,mean,FALSE) will give the probability of observing a value x for a given mean
value.

Excel will do a linear least square fit (LINEST), but this least squares fit assumes that
the uncertainties are the same for each measurement. While this is not correct for our data,
obtaining such an unweighted linear least squares fit is OK for this lab.

This lab is easier that it appears. You will not need to hand-code in most of the formulas.
For example, calling using LINEST an the cells containing your times and the mean values
is evaluating Equation 7. Don’t overthink it.
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Remember that for spreadsheets, cells are denoted by letters for columns and numbers
for rows, with spans denoted by :

Example: B2, A15 B6:B29

If you need to hold on value constant over a span, use $ before the column letter or row
number.

Example B$2, $A15, $B$6:B29
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