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Abstract  Model local potentials that have been used to describe the correlation
and polarization interactions in positron-molecule scattering are com-
pared. Model density functional correlation-polarization potentials de-
veloped for electron-molecule and positron-molecule scattering are con-
sidered in addition to the distributed positron model. Results computed
using these potentials are compared to available experimental data for
positron-SFg scattering. It is found that the distributed positron model
gives very good agreement with experimental data in contrast to the
poor agreement found with the positron-molecule correlation-polarization
potential.

1. Introduction

The study of low-energy positron scattering from molecules has a long
history related to the interest in positron annihilation in gases and in
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the slowing down of positrons in several media [1, 2]. Such investigations
are in part motivated by the possible analytical applications of positrons,
which include [3] surface analysis, microscopy of materials, and medical
tomography [4]. In each case the cross sections from various elastic,
inelastic, and reactive scattering processes are important in determin-
ing the resolution and contrast possible in the analytical application of
positrons.

A more fundamental motivation for studying positron scattering from
molecules is to compare the scattering cross sections to those of corre-
sponding electron scattering processes [5, 6]. This comparison can then
lead to a better understanding of the scattering process in these sys-
tems. For elastic scattering, the effective optical potential for positron
and electron scattering from molecules can be decomposed into four
components. The static part of the potential is due to the electrostatic
interaction of the projectile with the unperturbed atomic or molecular
electron density and the nuclei. The static potential has the same mag-
nitude but has the opposite sign in the electron and positron cases. This
interaction is almost everywhere attractive in the electron-molecule case
and is thus repulsive in the positron case. In electron-molecule scatter-
ing there is also an attractive exchange interaction that is due to the
antisymmetrization requirements in the many-electron wave function.
This term is not present for positrons. The third term is the correlation-
polarization (CP) potential which is caused by the response of the target
to the presence of the projectile. At large separations between the pro-
jectile and the molecular target, the polarization potential is due to
the static polarizability of the target and is the same for electrons and
positrons. At shorter range, however, the effect of correlation between
the projectile and the electrons of the target will be different for electron
and positrons, but in both cases it gives rise to an attractive interaction.

One major difference between electron and positron scattering is that
in the latter case there is the possibility of positronium (Ps) forma-
tion. The threshold for positronium formation, Fpg, is given by Fpg =
F;— Bpg, where Fj is the ionization energy of the molecule and Bpy is the
binding energy of Ps (6.8 eV). Above this threshold, the cross section for
Ps formation can be a substantial fraction of the total scattering cross
section [7]. An additional channel in positron scattering, which is not
present in electron scattering, is direct positron annihilation, but this
process has a small cross section except very near the threshold for Ps
formation [8]. Thus, when comparing computed elastic positron scatter-
ing cross sections to measured total positron scattering cross sections,
one would expect agreement between theory and experiment below Fpg,
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with the elastic cross section being somewhat smaller than the total cross
section above Ep.

A commonly occurring feature in electron-molecule scattering is the
shape resonance. They are one-electron resonances which generally oc-
cur due to a combination of the overall attractive interaction between
the scattered electron and the molecule and the dynamical coupling be-
tween angular and radial motion of the projectile [9]. In atomic systems
this dynamical coupling can be expressed as an effective radial potential
which has a repulsive term that depends on the angular momentum and
an attractive term due to the attractive electron-atom interaction. Be-
cause of the repulsive static interaction in positron-molecule scattering,
one can only get traditional angular-momentum shape resonance when
the CP potential is sufficiently attractive. It is also possible to have
a resonance with the positron trapped inside a cage molecule, such as
Ceo, due to the electrostatic barrier provided by such a molecule. We
have predicted shape resonances of both types in positron-Cgg scattering
based on local model potentials for the CP interaction [10]. The earlier
calculations on Cgg also showed that there are substantial differences be-
tween different models of the correlation potential. Unfortunately, there
are as yet no experimental data for the positron-Cgg scattering problem
with which to distinguish the accuracy of the different potentials for
large molecular systems such as Cegp.

The study presented here examines the utility of different local CP
potentials on a large system for which there are experimental data. We
will consider three types of CP potentials. First, we will consider one
that has been found to give good results for electron-molecule colli-
sions [11] based on the Perdew-Zunger density-functional potential [12].
We will refer to this potential as the electron correlation-polarization
(ECP) potential. The second potential is a density-functional potential
that was developed for positrons interacting with a uniform electron gas
by Boronski and Nieminen [13]. We will refer to this potential as the
positron correlation-polarization (PCP) potential. The third potential
is the distributed positron model (DPM). This local model potential was
developed to provide an approximate (though accurate), non-empirical
method to calculate the polarization potential for use in theoretical treat-
ments of low-energy positron collisions with atoms [14] or molecules [15].
The total elastic positron scattering cross sections for these different CP
potentials are then compared to the experimental data of Dababneh et
al. [5] and Sueoka et al. [16] for positron-SIg scattering.

Positron-SFg scattering has been previously studied theoretically us-
ing a simple additive optical potential [17]. This model gave agreement
with measured total scattering cross sections for collision energies above
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200 eV. However, these results are not directly comparable to the elastic
scattering cross sections computed here due to the inclusion of terms
in the optical potential that incorporated inelastic scattering and Ps
formation in the model.

2. The Theoretical Models

The full treatment of the positron-molecule problem would require
the inclusion of the degrees of freedom due to nuclear motion, i. e. the
rotational and vibrational motion of the molecule. As a first approxima-
tion, we will ignore the vibrational motion and assume that the molecule
has a fixed geometry. Additionally, we will assume that the effect of the
rotational motion is to average the cross section over the possible orien-
tations of the molecule. These assumptions for positron scattering are
commonly referred to as the fixed-nuclei (FN) approximation.

The static interaction, Vs(r,), was obtained from the electron density
of the self-consistent-field (SCF) wave function of the target molecule at
its equilibrium geometry. The most direct approach to the inclusion of
positron-electron correlation usually involves an extensive configuration-
interaction (CI) expansion of the target electronic wave function over a
suitable set of excited electronic configurations with further improvement
of the wave function obtained by adding Hylleraas-type functions which
can describe the positron wave function within the physical space of
the target electronic charge distribution [18]. Such expansions, however,
are markedly energy-dependent and usually converge too slowly to be
a useful tool for general implementation for complex molecular targets,
where truncated expansions need to be very large before they begin to
be realistic in describing correlation effects [19, 20]. As a consequence,
we have developed approximate one-particle optical potentials for the
treatment of the positron scattering problem that include the CP effects.

2.1. The ECP and PCP Potentials

As noted above, the asymptotic form of the polarization interaction is
independent of the sign of the charge of the projectile and, in its simpler
spherical form, is given by the well-known second-order perturbation
expansion formula in atomic units

o0

ap
Ve (r,) = Z T op22 (1)

=1 <Tp
where 1, represents the scalar positron distance from the molecular cen-
ter of mass, and the a; are the multipolar static polarizabilities of the
molecule, which depend on the nuclear coordinates and on the elec-
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tronic state of the target. In most cases only the lowest order is kept
in the expansion given in Eq. (1) and therefore the target distortion is
viewed as chiefly resulting from the induced dipole contribution, with
the molecular dipole polarizability as its coefficient [20]. The drawback
of the above expansion, however, is that it fails to correctly represent
the short-range behavior of the full interaction and does not contain any
effect from either static or dynamic correlation contributions [21]. We
have therefore studied the use of the local density-functional approxima-
tion [22, 23, 24, 25] in order to correct for such failures. We assume that
the dynamic correlation effects that dominate the short-range behavior
of the CP potential, Vep(r,), for closed-shell molecular targets can be
treated using a density-functional theory (DEFT) approach within the
range of the target electronic density and can be further connected with
the asymptotic dipolar form of Eq. (1) in the long range region.

We therefore describe the full Vop(r,) interaction as given by two
contributions which are connected at a distance rj [22],

V(]JDFT (rp) [rpl < rgcp
Vep(rp) = - (2)
VP(rp) |rp| > r;

Furthermore, as discussed earlier [22], the short-range correlation contri-
butions in Eq. (2) can be included either by considering the correlation
effects on an homogeneous electron gas without reference to the positron
projectile, as presented in Ref. [26], or by considering explicitly the
positron projectile as an impurity within the homogeneous electron gas
[13]. We have explicitly derived both forms of Vep and discussed their
merits for molecular targets in our earlier work. Both models will be
employed in the present work. The potential based on the homogeneous
electron gas will be that proposed by Perdew and Zunger [12] and will
be denoted Vgcp(r,). The form based on the density-functional theory
for an isolated positron interacting with an electron gas will be denoted
Vpcop(rp) and is a modified version of the PCP2 potential proposed by
Jain [27], which was derived from the density-functional energy expres-
sion of Boronski and Nieminen [13]. We have modified this potential to
cut off the potential smoothly as r; — oo by using the function

1 { 5.7382 3.5845}

Va(rs) =

; 3)

2
rs Ts

where rs > 4.0. The total interaction potential is then given as the sum
of the static and CP potentials to yield

Viot(rp) = Vs(rp) + Vep(rp), (4)
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where Vcp is either Vgcp or Vpep as discussed above. The Vp potential
was obtained using distributed polarization centers [9] with added terms
so that Vp(r,) = Vo(r,) when [r,| = rp.

The connection radius, r;, was obtained in a somewhat different man-
ner than in previous studies [10], where rj was taken to be the location
of the intersection of the [ = 0 partial waves of Vo and Vp which was
closest to the origin. Additionally, if there was no intersection, then the
location of the closest relative approach of the two potentials was taken.
In the present study, we found that a more reasonable choice was to
take the innermost intersection or closest relative approach of the two
potentials along the ray from the center of mass of the molecule (the S
atom) through one of the I' atoms.

In Vgcp and Vpop potentials, the actual connection of the potentials is
done using a smooth switching function [28]. In this switching function
there are four parameters, o, o', 3, and (', which define the shape
and range of the switching function. We have found that a satisfactory
switching function can be defined in terms of a single switching distance
d where o = 0.5493/d, o/ = o/d?, 3 = 0.8047/d?, and 3’ = 3/d?. For

all calculations presented here we took d = 0.25 au.

2.2. The DPM Polarization Potential

The DPM potential is another approximate CP potential. This is
based on a modification of the adiabatic polarization approach [29, 30]
which makes use of quantum chemistry technology to provide a varia-
tional estimate of the polarization potential. In the adiabatic approxima-
tion to the polarization potential, the positron is treated as an additional
“nucleus” (a point charge of +1) fixed at location r, with respect to the
center of mass of the atomic or molecular target. The target electronic
orbitals are allowed to relax fully in the presence of this fixed additional
charge and the energy lowering due to the distortion is recorded. This
energy lowering represents the adiabatic polarization potential at one
point in space. Of course, in order to represent fully the spatial depen-
dence of this interaction, many such points must be computed.

However, due to nonadiabatic and short-range correlation effects, e.g.
virtual Ps formation, the adiabatic approximation can overestimate the
strength of the polarization potential for smaller values of |r,| where
the positron has penetrated the target electronic charge cloud [29, 30].
The DPM corrects for this by treating the positron as a smeared out
distribution of charge rather than as a point charge. The physical rea-
soning behind this approach can be explained in the following way. If
the scattering particle really were an additional nucleus, a proton, then
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the dominant short-range correlation effect would be virtual hydrogen
atom formation into ground and excited states, and the delta function
distribution of positive charge at the center of mass of this virtual sys-
tem would be correct. But, for a Ps atom, the positive charge is not well
localized at the center of mass. Thus, to mimic this effect in comput-
ing the polarization potential, we represent the positron as a spherical
distribution of charge in our quantum chemistry code. This leads to a
polarization potential that more nearly reflects the correct physics and
that smoothly reduces to the correct result for larger values of |r,|.
The distortion of the molecular orbitals in the electronic structure
code is driven by the nuclear attraction integrals that involve the positron,

LA = (ai(re) [V (re; ppos) | B (re)) (5)

where the interaction V' between an electron and ppos is given by

-1
V(reipoon) = [ 41 ppun(r)

p— (6)
For the adiabatic approximation, ppes(r) = 6(r — r,), which is appropri-
ate for the positive charge distribution in a virtual hydrogen atom and
results in the standard nuclear attraction integrals.

The representation of the positron charge within the DPM is chosen to
reflect the mean distribution of positive charge within virtual Ps atoms
in the various states which can be formed. Although there is no precise
data that would allow us to fix the size of the distribution, this parame-
ter has never been treated as a “tunable parameter.” We do not suggest
that our choice of ppqs is by any means an exact representation when the
virtual Ps is part of an atomic or molecular target, merely a physically
reasonable one that automatically reduces to the adiabatic result in the
appropriate region. In earlier studies [14, 15] of positron scattering in-
volving the DPM we initially chose convenient, uniform spherical charge
distributions whose radius 12, was set to either the average ground state
Ps radius of 1.5 au or to 1.0 au, the maximum in the ground state Ps
radial distribution with respect to the Ps center of mass. Both choices
provided enormous improvement over scattering results obtained with
the simple adiabatic approximation and strongly suggest that the DPM
mimics the correct physics for short-range correlation.

As originally implemented the DPM scheme made use of direct three-
dimensional quadrature to compute the modified nuclear attraction in-
tegrals of Eq. (5) so that, if necessary, essentially any choice of ppos
could be accommodated. However, to implement the DPM scheme for
larger target molecules such as SFg (and in light of the success of the
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very simple choices for the positron charge distribution) we now con-
struct ppos from the STO-3G basis for 1s atomic hydrogen with Slater
exponent ¢ = 1.24. This choice gives results similar to those obtained
with the DPM R,=1.5 au distribution, but has the advantage that all of
the modified nuclear attraction integrals can be evaluated in closed form
by means of the very efficient functions used to compute two-electron
integrals. Again, once the DPM potential is calculated, it is combined
with the static potential to yield a total interaction potential as given

by Eq. (4).

2.3. Solution of the Scattering Equations

By employing one of the forms of Vi discussed above, we have re-
duced the positron-molecule scattering problem to a potential scattering
problem, where the potential is a local potential but does not have spher-
ical symmetry. The corresponding scattering equations are solved by
expanding the Hamiltonian and the wave functions using a single-center
expansion (SCE). This expansion reduces the Schrédinger equation to a
set of coupled ordinary differential equations of the form

1Ld2 I+ 1)
{§d_rg B 2r2 + Eeon th:,‘ iy (ro) fp(rp), (7)

where F.o is the collision energy and the positron continuum radial
functions f}/,(r,) are the required unknown quantities originating from
the symmetry-adapted SCE form of the wave function of the scattered

particle,
Fpu(rp) Zr_l (rp X}?z (Pp)- (8)

Here (pp) labels the relevant 1rreduc1ble representation (IR), with p de-
scribing the IR of the scattered positron and with p being one of its
components, and X}*(7,) are the generalized harmonics. The index h
further labels a specific angular basis function for each chosen partial
wave contribution [ found in the pth IR under consideration. The cou-
pling matrix elements on the right-hand side of Eq. (7) are then given
by

Vit (rp) = (X [Vior (0) | X F0 ). (9)

The details of the angular products have been described before [31]
and will therefore not be repeated here. Suffice it to say that, when using
the static-correlation-polarization interaction within the SCE formula-
tion and the close-coupling approximation implied by Eq. (7), the for-
mulation and the corresponding coupled-differential equations are solved
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to yield rotationally summed, integral elastic cross sections for each IR
contributing to the scattering process. The total cross section is then
given as

Otot (Ecoll) - Z U;}M(Ecoll)- (10)

Y2

One should stress at this point that the above treatment does not
include any contribution from a number of processes: Ps formation,
direct positron annihilation, electronic excitation, ionization, vibrational
excitation, or rotational excitation.

3. Comparison of the Results from the Different
Potentials

For the computation of the static, ECP, and PCP potentials, for
positron-SFg scattering we used a 6-3114++4G(3df) one-electron basis
set [32] which yielded a self-consistent field energy of -994.309353 au for
R(S — F) = 2.948au. The asymptotic polarizability was taken to be «
= 4.50 A3 [33, 34], which was distributed with 0.36 A® centered on the
S atom and 0.69 A% on each of the F atoms.

The DPM polarization potential was obtained from the PATMOL [35]
suite of quantum chemistry codes using a triple zeta with double polar-
ization basis [36] for the target. This basis consists of a (12s9p2d /7s5p2d)
set on the S atom and (9s5p2d/5s3p2d) set on the I atoms. The ground
state energy in this basis is -994.2489 au. Finally, for calculations involv-
ing the DPM potential, an additional (4s3p) basis set was centered on
the positron location. Computations for the DPM polarization potential
were performed on a 16-node Beowulf cluster [37] running Linux with
standard MPI calls.

In Fig. 1 we show the different Vop potentials along three different
rays from the S atom outward. In the figures showing the potentials, the
directions of the rays are given in terms of # and ¢, which are the usual
spherical polar angles and where the SFg molecule is oriented with the
S atom at the origin and with the six F atoms on the axes of the cor-
responding Cartesian coordinate system. As was noted earlier [10], the
PCP potential is much more attractive than the ECP potential. Inter-
estingly, the DPM potential is between these two potentials in strength.
The DPM potential is much smoother near the nuclei than are the two
density-functional CP potentials which reflect the sharp peak in the elec-
tron density at the nuclei. In Fig. 2 we give the values of Vi for these
three potentials. Note in this figure the small spikes in the static poten-
tial in the directions that do not pass through one of the I atoms. These
features are due to the truncated partial wave expansions and would not
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be present in the limit of an infinite expansion. One can see that, on
the scale used in Fig. 2, the ECP and DPM potentials are very similar
whereas the PCP potential is substantially more attractive than either
the ECP or DPM potentials. Another important point illustrated in
Fig. 2 is that the part of the CP potential further than 1.0-1.5 au from
the nearest nucleus will have the most significant effect on the scatter-
ing properties of the molecule since in regions nearer to the nuclei the
repulsive static interaction is dominant.

Although it is not apparent in Figs. 1 and 2, the ECP and DPM po-
tentials have different asymptotic strengths. The ECP was fixed to agree
asymptotically with the experimental static electronic polarizability of
SFg, which is a = 4.50 A3 [33, 34], whereas the polarizability found in
the DPM calculations was a = 3.50 A3. In order to consider the sen-
sitivity of the computed cross section to the asymptotic polarizability,
we also constructed an ECP potential which used the same asymptotic
polarizability as was computed in the DPM potential. We will refer to
this potential as the ECP2 potential. In Fig. 3 we show the ECP, ECP2,
and DPM potentials along the ray from the S atom through one of the
I atoms (6 = 90° and ¢ = 0°) in the range of r, where there is a sub-
stantial dependence on the manner in which the Vi and Vp are joined
together. By changing the asymptotic strength of the potential, the
value of r; changed from 6.22 au in the ECP potential to 5.81 au in the
ECP2 potential. Thus, to separate the effect of the changing asymptotic
potential from the change in the connection radius we have also consid-
ered a third ECP potential, ECP3, which was obtained using the same
value of the polarizability as was used in the ECP potential, but fixing
the connection radius to be 5.81 au as was found in the ECP2 potential.
The value of this potential is also shown in Fig. 3. One can see that
ECP2 and ECP3 are nearly identical in the region shown in Fig. 3, with
only small absolute differences due to the different asymptotic strength.

In Fig. 4, the values of the three ECP potentials and the DPM poten-
tial are shown on the ray with 8 = 45° and ¢ = 45°. We can see that in
this direction the ECP and ECP3 potentials are nearly the same. Thus,
there is little sensitivity to the value of rj. Also in this direction, the
ECP2 potential is a smooth connection of the ECP potentials at small
rp and the asymptotic form of the DPM potential.

The total elastic scattering cross sections for these potentials are given
in Fig. 5. Considering that the ionization potential of SFg is 15.3 eV
[38] and that the binding energy of Ps is 6.8 eV, the threshold for Ps
formation in this system is 8.5 eV. Thus, one would expect reasonable
agreement between theoretical elastic cross sections and experimental
total cross sections for energies less than 8.5 eV. In Fig. 5 we see that
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Figure 1.
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The CP potentials in the directions indicated: the solid line is the DPM

potential; the dashed line is the ECP potential; the dot-dashed line is the PCP

potential.
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Figure 2. The Viot potentials in the directions indicated: the solid line is the
DPM potential; the dashed line is the ECP potential; the dot-dashed line is the PCP
potential.
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Figure 3. The Vcp, Vior potentials in the § = 90° ¢ = 0° direction: the solid line is
the DPM potential; the long-dashed line is the ECP potential; the short-dashed line
is the ECP2 potential; the dot-dashed line is the ECP3 potential.
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Vot (au)

-0.02

Figure 4. Value of the Vcp, Vies potentials in the § = 45° ¢ = 45° direction:
the solid line is the DPM potential; the long-dashed line is the ECP potential; the
short-dashed line is the ECP2 potential; the dot-dashed line is the ECP3 potential.

the DPM cross sections are in good agreement with the experimental
data below a scattering energy of 8.5 eV. In Fig. 6 an expanded view of
the low energy portion of the results is given where it is seen that there
is particularly good agreement between the DPM calculations and the
data of Sueoka et al. [16].

The difference between the ECP and ECP3 calculations gives an indi-
cation of the sensitivity of the computed cross sections to the connection
radius. In Fig. 5 we can see that at very low energy the change in rj
leads to a 30% change in the cross section. Above ~1 eV the difference is
much smaller. The difference between the ECP2 and ECP3 results from
the different asymptotic potential used in each case. Also from Fig. 5 we
see that the low energy cross sections are most sensitive to the change
in the asymptotic potential. Above ~10 eV all three ECP potentials
give very similar results. The ECP potentials represent the strength of
correlation effects in electron-molecule scattering. Thus the difference
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Total Cross Section (A2)

0.01 0.1 1 10 100
E (eV)
Figure 5. Total positron-molecule scattering cross sections for the potentials indi-

cated: the circles are from Sueoka et al. [16]; the triangles are from Dababneh et al.
[5]. For both experiments, the uncertainties given in the original paper are smaller
than the size of the symbols used in the figure.

between the ECP and DPM results above ~10 eV can be ascribed to
the difference in short-range correlation effects for positron and electron
scattering.

Finally we note that the results obtained with the PCP potential are
substantially different from the experiment and also from the results
obtained with the other potentials. One can observe a feature at ~1.5
eV that is due to a shape resonance in the PCP calculation. As in the
positron-Cgp study [10], such a feature seems to be the result of the
overly attractive nature of the PCP potential.

A previous study on positron scattering from CF4 and CCly [39] has
shown that it is possible to obtain reasonable agreement between ex-
perimental cross sections and those calculated using the PCP potential.
However, to get such agreement required a very different choice for the
Vp potential. In the earlier study [39] Vp was constructed using all of the
polarizability located on the central C atom. The connecting radius, ry,
was then between the C atom and the halogen atoms. This choice of Vp
and r; effectively eliminated the overly attractive PCP in the region of
the halogen atoms leading to reasonable agreement between experiment
and theory.
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Figure 6. Total positron-molecule scattering cross sections: the solid line gives

the results of the DPM potential; the long-dashed line gives the results of the ECP
potential; the short-dashed line gives the results of the ECP2 potential; the dot-
dashed line gives the results of the ECP3 potential; the circles are from Sueoka et al.
[16]; the triangles are from Dababneh et al. [5].

4. Conclusions

The scattering cross sections obtained using the DPM potential for
positron-SF¢ scattering are in very good agreement with the most recent
experimental data. The DPM potential does have one empirical param-
eter, (, however the good agreement for scattering cross sections found
here in SFg with a value of ( = 1.24, chosen to represent the distribu-
tion of positive charge in isolated Ps, suggests that a single value of ¢
may lead to accurate model CP potentials independent of the molecule
studied.

The ECP potentials can yield cross sections that are fairly close to
the experimentally measured values. However, the results one obtains in
positron-molecule scattering are much more sensitive to how the V¢ and
Vp potentials are connected than in the electron scattering case. This is
most likely due to the fact that, in positron scattering, the static poten-
tial and the CP potentials have opposite signs. Thus, the net potential is
smaller in magnitude than either the static or CP potentials, and small
relative changes in the CP potential yield larger relative changes in the
total potential [39]. A second source of sensitivity to the connection
method is that near the nuclei the total positron-molecule potential is
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very repulsive. Thus, the scattering cross section is insensitive to the
value of the correlation potential in the region of the nuclei but is very
sensitive to the CP potential in the region outside the nuclei, as seen
in Fig. 3. The part of the CP potential which has an impact on the
scattering cross section is the region where the connection occurs. This
leads to the unsatisfactory sensitivity to the connection parameters used
to construct ECP type potentials and limits their utility in a predictive
model for positron-molecule scattering.

The PCP potential as implemented here does not lead to satisfactory
results. However a different choice of Vp can lead to better agreement
with experimental data [39]. This sensitivity to the form of the asymp-
totic potential in the PCP potentials again highlights the need to find a
better way to connect the Vp and Vi potentials if one wants to employ
potentials of this type.

Finally, we note that the an adiabatic positron-molecule CP poten-
tial, denoted Vjst in Ref. [39], has been applied to positron scattering
from CF4 and CCly. That previous study found that the the Ve po-
tential gave better agreement with experimental data than did the PCP
potential even with the different choice of connecting to Vp. A direct
comparison of the adiabatic and DPM type interaction potentials for
larger molecular systems would be of interest.
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