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Abstract

Two different models for treating the contributions of dynamical electron-
positron correlation forces to the full interaction between low-energy positron
beams scattered off polyatomic gases are considered and applied to obtain
the elastic integral and differential cross sections (at collision energies below
Ps formation) for the methane molecule. The computed quantities are then
compared with available experiments, both for integral and differential data,
and found to be in good accord with measured quantities. Both models also
agree rather closely with each other and the physical reasons for this behavior

are briefly discussed.
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I. INTRODUCTION

The interaction of low-energy positron and positronium (Ps) beams with atomic and
molecular gases has attracted increasing attention in recent years because of the wide range
of good-quality experiments that has become available and because of the testing of the more
fundamental properties of atoms and molecules which have become accessible as the beam
energies have gone down to the thermal or near-thermal range while also increasing their
intensity. Thus, one finds that this particular leptonic particle is providing very interesting
probes of elementary forces, of microscopic structures and of fundamental processes that
can occur in atomic and molecular gases (See for example Surko and Gianturco, 2002). As
the quality of the experiments improves, however, and as the range of probed molecular
gases increases with them (Gilbert et al., 1999; Kawada et al., 2000; Laricchia and Wilkin,
1997), the demands on more realistic physical models for the processes which are being
observed are also increasing and therefore better quality computational treatments become
vital for providing realistic interpretations of, and good agreement with, the broad variety
of data gathered on a very large class of molecular systems. This is especially true when
one is dealing with more complicated molecules, made up of several different atoms and a
large number of bound electrons, which tremendously increase, with their higher density of
internal states, the complexity of treating as correctly as possible the dynamical couplings
between the impinging, slow positron and the bound, electronuclear molecular “network”.

We have endeavored, over the years, to put together a parameter-free modelling of the
forces at play in several examples of polyatomic targets (Gianturco and Mukherjee, 1999;
Curik et al., 2000; Gianturco and Mukherjee, 2001; Gianturco et al., 2001; Nishimura and
Gianturco, 2002) undergoing elastic, inelastic scattering and annihilation processes with
slow positron beams. In all the cases examined it turned out that the modelling of the
short-range correlation forces, which evolve into the long-range (LR) polarization interaction
once the positron is well outside the molecular charge distribution, is one of the crucial

ingredients for a realistic treatment of scattering observables. In the present study we



therefore analyze in some details two different ways of obtaining what goes under the name of
the correlation-polarization potential for positron scattering, V.,. The latter quantity should
rigorously be a nonlocal, energy-dependent interaction potential (see for example van Rieth
and Humbertson, 1998) since it is meant to describe the response function of the bound
electron density to the dynamical distortion induced by the travelling, continuum positron
projectile during the time of its overlapping interaction with the electronuclear molecular
network. However, the problem is already simplified at the outset by separating the nuclear
motion and describing the e~ — et correlation effects within a Born-Oppenheimer picture for
the molecular nuclei which are usually considered as frozen in a given geometry during the
scattering process. This approximation is known as the fixed-nuclei approximation (FN) (see
for example Kimura et al., 1998). Further simplifications need to be introduced depending on
the collision energy region one wishes to consider and on the dynamical observable one wants
to evaluate for experimental comparison. In the following Section we will therefore describe
two of the modelling approaches that we have considered for an efficient and realistic handling
of polyatomic gases, and for which we will show a specific application and comparison in

Section III. Our conclusions will be briefly summarized in Section IV.

II. THE POSITRON-MOLECULE SCATTERING EQUATIONS

As mentioned in the Introduction, we represent the interaction potential between the
impinging positron and the molecular target with a local form. It contains contributions from
the electrostatic interaction of e with the molecular nuclei (kept at their fixed equilibrium
geometry) and the bound molecular electrons plus the correlation effects from the short-
range dynamical couplings between the bound electrons and the positron, V..., that evolve
in the LR region of large e*-molecule distances into the dipole polarization potential V.
The object of the present study is to show the different ways in which the correlation-
polarization potential, V., = Viorr + Viol, can be obtained for a polyatomic target and what

the consequences are in the calculation of the scattering attributes that can be compared



with experiments such as angular distributions at low scattering energies and integral cross

sections below the Ps formation threshold, which is 5.8 eV for the CHy target.

A. Single Center Expansion Equations

In our approach any three-dimensional function, being either one of the bound state
orbitals ¢;(r;) for one of the N bound electrons or the wave function ¥(r) describing the
impinging positron, is expanded using a single-center expansion (SCE) about the center-of-

mass of the molecule (Gianturco and Jain, 1986)

¢ (i) = —Z wiy, (i) Xi" (74) (1)
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where ¢ labels a specific, multicenter occupied orbital, which belongs to the specific irre-
ducible representation (IR) of the point group of the molecule. The indices p and p label
a relevant IR p and one of its components . The index h labels a specific basis, for a
given partial wave [, used within the pth component of the pth IR. The symmetry-adapted

angular functions in eqs. (1) and (2) are defined by

= > b Yim () - (3)

The details about the computation of the transformation matrices b

, have been given
before and will not be repeated here (Gianturco and Jain, 1986).

One of the two methods for finding the solutions of the scattering equations which we
employ is essentially that given by Sams and Kouri (1969a; 1969b) and further extended by
Rescigno and Orel (1981).

The interaction potential can be generally written in a local form Vi.(r,) (here the
static and correlation-polarization potentials) for a slow positron-molecule collision. The

SCE method expansion then results in the following set of radial differential equations:
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where indices ¢, j,n represent pairs of angular channel indices ([,h). The local potential

matrix elements are
Vin(rp) = (X (75) [Vioe (1) | X7 (7)) /drp (X (7)) Vioe (1) X3 (7). (5)

The non diverging solutions of eq. (4) satisfy its integral form (where for simplicity we

omit the (pu) labels)

Wij(rp) = ij i, (krp) +22/dr i (krp <) nu, (krp > ) Vin (r )%w( ) (6)

where jj(kr) and n;(kr) are Riccati-Bessel and Riccati-Neumann functions. One can show

that v;;(r,) can also be obtain from

Yij(rp) Z ¢ Crjs (7)
where the ny., wave functions on the right-hand side of eq. (7) satisfy the following set of
Nmax Volterra equations (for the detailed derivation see Sams and Kouri (1969a; 1969b) and
Rescigno and Orel (1981))

b (rp) = g (kry) + 2) /drégzi(rpvré)Vm(?“;)%bgj(ré)7 (8)
with
L. , o
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One should note here that the above approach is chosen because of its numerical sim-
plicity, although the more common use of ordinary differential equation solution methods is
just as viable an alternative and we have also employed it in the present study, as described
in detail in our earlier work (Gianturco and Lucchese, 1999).

The model local interaction potential, Vioc(r,), can be written as

Viee(rp) = Vi) + Vop(ry,) (10)

where the static potential V; for closed-shell molecule with N,.. doubly occupied orbitals

and M nuclear centers takes the form



Valr,) Z - QNf Jér '¢ (11)

|rp
The well known physical shortcoming of limiting the local interaction in eq. (10) to the
Vit contribution only is the omission of the all-important target response function, ¢. e. the
effects from the dynamical correlation between the continuum lepton et and the bound target
electrons below the scattering energy required for Ps formation. Such forces will change over,
outside the region of overlap between the bound electrons and the continuum function, to

the LR polarization forces chiefly described by the dipole polarizability contribution

«
Vpol(rp),,p;oo 5 (12)
P

Strictly speaking, this effect arises as virtual excitations of energetically closed electronic
states, including continuum ones. In practice, however, the infinity of such states precludes
treating polarization rigorously. Considerable effort has therefore been expended in the
past three decades to try to include it as accurately as possible, albeit not rigorously. In
addition, what makes computational treatments so difficult is not only the representation of
the distortion of the target electron density as a function of a charge fixed some distance away
from the origin of all charges, but also the additional effects which come to play near and
within the target core mentioned before. Moreover, a further complication comes from when
the wave function of the incident particle strongly overlaps the target core, the independent-
particle model breaks down and many-body effects predominate. In order to devise simpler
ways of handling the polarization forces over the whole range of relative distances, various
approaches have been tried in recent years, as discussed in Gianturco and Lucchese (1999)
and Gianturco et al. (2001). Ideally, such model correlation-polarization potentials (V)
should be free of empirical parameters which need adjustment to experimental cross sections,
and it is in this sense that they are often described as ab initio potentials. As for the
positron projectile, the absence of some nonlocal effects such as the electron exchange should
make the treatment of its low-energy scattering from many-electron targets less difficult and

computationally less demanding. The Vi, can be treated exactly and therefore the way one



handles the V,, plays an essential role in deciding on the quality of the theoretical model. At
large distances from the core, the velocity of positron can be considered low enough so that
the bound electrons respond adiabatically to the positron without specific dependence on
its local velocity. As the incident positron nears the target, however, the repulsive Coulomb
core further slows it down while the attraction from the bound electrons increases and
strongly modifies its motion in the intermediate region via a correlation process similar to
multiple-scattering effects. The V,, at short-range (SR) is therefore not only collision energy
dependent but also nonlocal. As a result, in regions of intermediate- and SR interactions,
nonadiabatic nonlocal effects play an important role and differences appear between the
behavior of electron and positron as projectiles (Gianturco et al., 1993).

A simple remedy has been to multiply eq. (12) by a cutoff function involving some
adjustable parameter. Nevertheless, this approach is unsatisfactory, although the results
may be "tuned” to agree with observations. For positron scattering, most of the calculations
prior to 1990 used a V¢, which was the one employed for electron scattering, Vecp, assuming
that such distortion effects are not sensitive to the sign of the charge of projectile, and agree
with the experiment well (see for example Gianturco et al., 1993). Morrison et al. (1984),
on the other hand, found that the V.., is inadequate and that there is a need to generate a

true positron polarization potential, a more correct V, potential.

B. The Positron-Electron Correlation-Polarization Model

The first of our present V., models, the V., potential, was first applied to positron
scattering (Jain, 1990; Jain and Gianturco, 1991) and is based on the correlation energy
e“7P of a localized positron in an electron gas together with its hybridization to the correct
asymptotic form of eq. (12). The quantity e°~? has been originally derived by Arponen and
Pajanne (1975; 1979) from the theory that the incoming positron is assumed to be a charged
impurity at each fixed distance r, in an homogeneous electron gas which is in turn treated

as a set of interacting bosons which represent the collective excitations within the usage of



the random phase approximation. Based on their work, Boronski and Nieminen (1986) gave
the interpolation formulae of €77 over the entire range of the density parameter r; which
satisfies the relationship of %erp(r) = 1. The relationship between the V... and ¢~ which
is consistent with the local density approximation and a variational principle for a total

collision system with the size of the target is given by (Kohn and Sham 1965a; 1965b)

Vi) = 22 {p(5,) =7 plr,)1} (13)

where p denotes the undistorted electronic density of the target, and this quantity provides
the probability for finding any of the electrons near the impinging positron. Thus, the total

Viep potential for the et-molecule system is given by

Voep(ry) = Veore(r,)  for r, <r,

= Voo(r,) for r, > r. (14)

The Vo is connected with the asymptotic form of eq. (12) at the position of r. (say, around
a few ag) where Viop and Vo) first cross each other as r, increases. In our present case of
CHy, the value for r. is 3.2 ag.

The total local interaction potential, Vise, as defined in eq. (10) is therefore given by the
sum of the exact static interaction between the impinging positron and the (electrons and

nuclei) components of the molecular target Vi, (for detail forms, see for example Gianturco

and Jain, 1986) and the V.

C. The Distributed Positron Model

Another possible model correlation-polarization potential which can be used to model V¢,
in eq. (10) is the distributed positron model (DPM) potential, Vipm. The form adopted here
for the Viypm, 1s based on a modification of the adiabatic polarization approach which makes
use of quantum chemistry technology to provide a variational estimate of the polarization

potential. In the adiabatic approximation to the polarization potential, the positron is



treated as an additional “nucleus” (a point charge of +1) fixed at location r, with respect
to the center of mass of the atomic or molecular target. The target electronic orbitals are
allowed to relax fully in the presence of this fixed additional charge and the energy lowering
due to the distortion is recorded. This energy lowering represents the adiabatic polarization
potential at one point in space. Of course, in order to represent fully the spatial dependence
of this interaction many such points must be computed.

However, due to nonadiabatic and SR correlation effects, e.g. virtual Ps formation,
the adiabatic approximation can overestimate the strength of the polarization potential
for smaller values of r, where the positron has penetrated the target electronic cloud. The
present Viypm corrects for this by treating the positron as a smeared out distribution of charge
rather than as a point charge. If the scattering particle really were an additional nucleus, a
proton, then the dominant SR correlation effect would be virtual hydrogen atom formation
into ground and excited states, and the delta function distribution of positive charge at the
center of mass would be correct. But, for a Ps atom, the positive charge is not localized
at the center of mass and to mimic this effect in computing the polarization potential we
represent the positron as a spherical distribution of charge. This leads to a polarization
potential that more closely reflects the correct physics and that smoothly reduces to the
expected result for larger values of r,,.

The distortion of the molecular orbitals in the electronic structure code employed here

is driven by the nuclear attraction integrals (NAls) that involve the positron,

LM = (ai(re) [V (re: ppos)| Bi(re)) (15)

where the interaction V' between an electron and ppos 1s given by

—1

re — rp|

Vive ppos) = [ &7y ppos(ry) (16)

For the adiabatic approximation, we have ppes(r,) = 6°(r, — r/), which is appropriate
for the positive charge distribution in a virtual hydrogen atom and results in the standard

nuclear attraction integrals (Lucchese et al., 2001). Although there is no precise data that



would allow us to fix the size of the distribution, this parameter has never been treated as
a “tunable parameter”. We do not suggest that our choice of ppos is by any means an exact
representation when the virtual Ps is part of an atomic or molecular target. It is merely
a physically reasonable choice that automatically reduces to the adiabatic result in the
appropriate region. In earlier studies (Gibson, 1990; 1992) of positron scattering involving
the Vipm the choice was a convenient, uniform spherical charge distribution whose radius R,
was set to either the average ground state Ps radius of 1.5 ag or to 1.0 ag, the maximum
in the ground state Ps radial distribution with respect to the Ps center of mass. Both
choices provided enormous improvement over scattering results obtained with the simple
adiabatic approximation and strongly suggest that the Vg, mimics the correct physics for
SR correlation.

As originally implemented, the Vg, scheme made use of direct three dimensional quadra-
tures in the modified nuclear attraction integrals of eq. (15) so that essentially any choice
of ppos could be accommodated. However, to implement the Vi, model for larger target
molecules such as SFg (Lucchese et al., 2001) we construct ppes from the STO-3G basis for
1s atomic hydrogen with Slater exponent £ = 1.24. This choice gives results similar to those
obtained with the Vipm where r, =1.5 @, but has the advantage that all of the modified
NAIs can be evaluated in closed form by means of the very efficient functions used to com-
pute two-electron integrals. Once the Vi, potential is calculated, it is combined with the

static potential to yield the total local interaction potential of eq. (10).

I1I. RESULTS AND DISCUSSION

In the V,p calculations the CHy molecule was kept in its equilibrium geometry and Ty
symmetry. The target orbitals were expanded over a set of Gaussian-type orbitals (GTOs)
obtained at the D95« level of expansion via the GAUSSIAN 98 code (Frish et al., 1998).
The self-consistent field (SCF) total energy was -40.200639 hartrees. For the calculations

that employed the V., model we performed the SCE description of the five occupied MOs
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by employing up to [,.x = 12 in the multipolar coefficients, thereby constructing the cor-
responding static and correlation potentials up to Apnax = 24. The numerical grid in the
(r,d,¢) space used a (800 x 56 x 25) set of points, with the maximum radial value, rp, max =
74.14 ag. The scattering calculations where then carried out using a maximum value of the
positron partial wave of 12. For the calculations which employed the Vg, model potential
the target electrons described at the aug-cc-pVQZ quality level (Frish et al., 1998), with a
bond length, like before, of 1.0837 ay. The resulting SCF energy turned out to be -40.216489
hartrees. The asymptotic polarizability from this model comes to be 16.13 aJ, close to the
experimental value of 17.54 a2 employed within the V.., potential. A total of 44,030 points
of the (r,d,¢) grid were generated to construct the Vi, potential. The occupied target
MOs were expanded up to lhax = 30 and the potential had A, = 60 for the V; and Apax
= 16 for the Vypm,. The scattering calculations had a fixed radial grid out to r, = 14 aq
using 1,408 radial points. This grid was then dynamically extended until V,./Feon < 107°.
Thus for example, when the collision energy, ., was 1.0 eV, the grid was extended to 139
ag. The (9, ) grid was given by (128 x 61) points. The scattered positron was expanded
up to lyax = 30 but only [,.x = 10 was used to construct the corresponding K-matrix. The
gaussian width employed for the positron was given by an exponential value of 1.24, as
discussed before and as used in earlier work (Lucchese et al., 2001). The basis set used in
the computation of the Vi, potential was (6s3p) on the H atoms (Huzinaga, 1965; Dun-
ning, 1971) and was (9s5p/4s3p) on the C atom (Dunning, 1970) with additional (2s, 1p, 2d)
diffuse functions added.

We report in figure 1 the spherical component of the two model potential employed in the
present comparison, where we see that the V., model is definitely stronger near the core,
where however the repulsive V; largely dominates the scattering. However, the intermediate
range of interaction shows initially a stronger effect from the V,¢, as compared to the weaker
(and smoother) Vipm treatment (for 1.0 < r, < 4.0ag) but exhibits a switch of strength
before merging into the “really” asymptotic region: the intermediate region between about

4.0 and about 8.0 ag, therefore, corresponds to the transition between the strongly attractive
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SR core and the asymptotic LR polarization. Here the two potential models behave indeed
differently but their crossings also indicate a possible compensation effect in the evaluation
of the final observables from the scattering dynamics.

That this may be the case could be gleaned from the results reported in figure 2, where
we show the total integral cross sections (TCS) obtained from the experiments of Sueoka and
Mori (1986) (filled in circles) and then subtract from them the experimentally determined
vibrationally inelastic cross sections of Sullivan et al. (2002), in order to obtain a better
estimate of the elastic cross sections (open circles).

The computed elastic integral cross sections (ICS) are also reported in the same figure:
the solid line gives the values obtained from the Vg,, model potential, while the dashes
report the elastic (rotationally summed) ICS obtained by using the V., potential. Both
curves follow rather closely the experiments, but the Vg, results are always yielding larger
cross sections down to the energy region between 1.0 and 3.0 eV. The values from Vg, are
however larger than the measured elastic data, while the V|, results are slightly smaller.
Such differences are the results of the Vg, potential producing stronger interactions than the
Viep in the intermediate radial range (see figure 1), where the balance between the repulsive
Vi and the attractive V., components is most important for the final cross sections. Both
model potentials, however, are seen to produce rather fair accord with the measured data
and to provide an acceptable description of the forces at play.

It is well known that the angular distributions from the scattering experiments are a very
sensitive test of the various features of the chosen interaction potentials. The results reported
in figures 3 to 6 therefore show our computed elastic (rotationally summed) differential
cross sections (DCS) at four different collision energies from 1.0 eV up to 6.0 eV. For the
calculations at 4.0 and 6.0 eV (figures 5 and 6) we also report the available experimental
cross sections of Przybyla et al. (1997), scaled to match the calculated values from the Vipm

potential at 90°. One can make the following comments from a perusal of the figures:

1. both computational models provide very similar shapes of the angular distributions

12



and do so at all the energies examined;

2. the calculations using the V., potential exhibit smaller DCS values, both in the back-
ward and forward scattering regions, when the lower collision energies are considered
(figures 3 and 4). However, when we examine the higher energy distributions (figures
5 and 6), we see that the values of the backward scattering using the V¢, potential
become larger: the SR region of the latter, which is stronger than that of the Vipm

potential, is therefore playing a greater role;

3. the shape of the experimental DCS available below Ps threshold, only at 4.0 and
6.0 eV, however appears to be well reproduced by both sets of calculations, which
show good agreement with the measured data by confirming the presence of a DCS
minimum between 50° and 60°. Furthermore, the strong increase of the experimental
values in the forward-scattering region is also reproduced reasonably well by both our

computational models.

IV. CONCLUSIONS

In conclusion, we have seen that differences exist between the two model potentials used
in the present work, but that nonetheless they both appear to yield ICS and DCS values
which are very similar in value and shape and that also agree surprisingly well with the
available experimental data. In other words, the possibility of treating larger polyatomic
targets when studying scattering processes with positron beams at energies below the Ps
formation threshold is shown by the present study to be viable through the use of model
potentials for the description of the all-important correlation-polarization effects. The Vipm
is also seen to provide a smoother behavior of that interaction and to differ the most from the
Vpep potential model in the intermediate regions that connect the SR to the LR interaction

values.
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FIGURE CAPTIONS

Figure 1: Computed spherical components of the V., potential model (solid line) and the

Viep potential model (dashed line) for the CHy target. See text for further details.

Figure 2: Computed and measured integral cross sections (ICS) below Ps formation for
et — CH, scattering. The filled circles report the total ICS values from the experiments
of Sueoka and Mori (1986) which are on an absolute scale, while the open circles are
the elastic ICS obtained by subtracting the inelastic contributions from Sullivan et al.
(2002). The solid lines are calculations using the Vo, potential while the dashed line

report the same calculations using the V,, potential.

Figure 3: Computed elastic angular distributions for a collision energy of 1.0 eV. The solid
line shows results using the Vi, potential while the dashed are the calculations using

the Vi, potential.
Figure 4: Same as in figure 3 but for a collision energy of 2.0 eV.

Figure 5: Same as in figure 3 but for a collision energy of 4.0 eV. The filled circles are the

scaled experimental values from Przybyla et al. (1997).

Figure 6: Same as in figure 5 but for a collision energy of 6.0 eV.

18



Spherical Polarization Potential (au)

||||||||||||||||||||||||__| J_l__u—t-JI—':==O

— —

, L1 1 1 | L1 1 1 | L1 1 1 | I | I | L1 1 1 | L1 1 I | L1 1 I

1 2 3 4 ) 6 7

()

T 2.nBiH



Vibrationally Elastic Cross Seciton ( 10° em’ )
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Differential Cross Section ( 16 em st )
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Differential Cross Section ( 16 em st )
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Differential Cross Section ( 16 em s )
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Differential Cross Section ( 16 em st )
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