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Abstract.

In this letter a commonly used procedure to ensure partial-wave convergence in the differen-
tial cross section is examined. Although the closure scheme in which the first Born approx-
imation is used to represent contributions from weakly scattered partial waves is found to
work well, the additional approximation of using the long-range form of the positron-atom
interaction potential for all space can be problematic at intermediate scattering energies.

An example involving elastic positron-Ar scattering is presented.



New theoretical interest in calculating low- and intermediate-energy differential cross sec-
tions (DCS) for positron collisions with noble gas atoms has been sparked by recent relative
[Smith et al 1990] and absolute [Dou et al 1992a, 1992b] DCS measurements. However, the
DCS converges slowly with regard to the number of partial waves that must be included,
even at relatively low scattering energies. This means that one must either approximate
convergence by explicitly including a very large number of partial waves in the calculation
[Ali and Fraser 1977, McEachran et al 1979, De Fazio et al 1994], or one must make use of a
closure scheme [Thompson 1966, Wadhera and Nahar 1987, Lino et al 1994] which implic-
itly includes contributions from all partial waves. The purpose of this letter is to point out
a “defect” in most methods currently being used to ensure convergence in the DCS that,
while negligible at low energies, can lead to significant errors at intermediate energies and
to suggest an efficient alternative. The nature of the approximations being used in most
current strategies are less appropriate for positron collisions than for electron collisions and
will be problematic for more polarizable systems.
Within the context of a single-center expansion of the scattering equations the truncated
(in I) expression for the single-channel, elastic scattering amplitude for collision energy
E = k?/2 and angle 6 is given by
1 lmas _
fi(k,0) = oo ; (21 + 1) [e*%®) — 1] P(cos 9), (1)
where §; is the phase shift for the [?? partial wave and P, is the ["* Legendre function. The
standard procedure is to solve for the phase shifts from [ = 0 to /,,4,, compute f;, and then

obtain the DCS for energy E and angle 6 from

ox(8) = |fi(k,0)|*. (2)

Unfortunately, f; and the DCS obtained from it are only approximately converged since,



in principle, l,,4; in equation (1) should be infinity. In practice, of course, a finite (though
possibly large) value of l,,4; is used to achieve a given level of convergence with the par-
ticular value depending on the system, the scattering energy, and the scattering quantity
of interest [Zigman 1995]. However, it has been pointed out [van Wyngaarden and Walters
1986, Nesbet and Geltman 1986] that to achieve convergence in the forward direction, the
partial wave sum for the DCS must be extended to infinity. An elegant and practical way
around this difficulty is to use a closure scheme for the scattering amplitude that includes
contributions from all partial waves. Since the centrifugal barrier term in the effective
potential prevents higher partial waves from penetrating too deeply into the near-target
region where the positron-atom interaction potential would induce strong distortions, the
high-angular-momentum partial waves are only weakly scattered. Thus, a weak scattering
method such as the first Born approximation (FBA) can be used to include contributions
from l4; + 1 to oo in the scattering amplitude. The scattering amplitude obtained from

such a Born closure scheme has the form [Wadhera and Nahar 1987]

f(kae) = fB(kae) - ftB(kae) + ft(kae)

= AfP(K,0) + fi(k,0) 3)

where the scattering amplitude in the FBA, fZ, contains contributions from all partial

waves and the truncated FBA amplitude,

lmae
fP(k,0) = > fP(k) Picos), (4)

1=0
contains contributions only up to l,,4,- Although the FBA is a poor approximation for the
strongly scattered low-angular-momentum partial waves, the closure scheme removes the
contribution from these lower partial waves by subtracting f from f? and replaces it with

the correct result f; obtained from solving the full scattering equations numerically.
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Writing the total positron-atom interaction potential Vi, (r) as
Vip(r) = Vst (r) + Vpar(r), (5)

where Vi (r) is the static field, Vjq(r) represents the induced polarization potential, and
defining q = k; — ky with |k;| = |ky| = k for elastic collisions, we have [Mott and Massey

1965

FB(k,0) = —% / Vi, (r) 97 dr. (6)

By making use of the spherical symmetry of Vy, as well as the known long-range dependence

of this potential on the induced dipole polarizability «,
e
Vep(r) ~ Vir(r) = o for (r>rm), (7)

we can rewrite equation (6) as

fB(k,0) = —2 /OTm 7 sin(gr) Vsp(r)dr + % {sinq(;];'m) + cosij]nrm) + qsi(qrm)} ,  (8)

where si(z) = Si(z) — 7/2 and Si(z) is the Sine integral [Abramowitz and Stegun 1965].
The matching radius r,, defines the distance at which the positron-atom interaction po-
tential assumes the asymptotic form shown in equation (7); for the positron-Ar scattering
calculations reported here a value of r,, = 15 a, was used. Once f? is obtained for a set
of quadrature angles, the Legendre expansion coefficients for equation (4) may be obtained

from projection

52wy = (552 [ sino) 12 (,0) Pi(cos) do, (9)

or, independently from [Thompson 1966]

FP(k) = —2(20 + 1) /0 (k)] Vi (r) (10)

where j;(kr) is a spherical Bessel function.



Thus far the procedure we have discussed involves replacing f; in equation (2) with the
Born closure amplitude of equation (3), and providing that the FBA accurately represents
contributions for [ > I,,4,, there are no other approximations. Although closure schemes
involving the FBA have been widely used for a variety of systems and processes [Collins
and Norcross 1978, Norcross and Padial 1982, Rescigno and Schneider 1992], most of the
positron-atom schemes incorporate the additional approrimation that Vy, is replaced by the
long-range form Vj p of equation (7) for 0 < r < oo. This is done for the following (sound)
reasons. First, since the Born closure includes contributions from the higher-order partial
waves—which at low scattering energies are largely excluded from the near-target region by
the centrifugal barrier—the long-range potential is primarily responsible for the scattering.
Second, this leads to a closed form for the long-range, Born-closure correction [Thompson

1966, Wadhera and Nahar 1987]

AfBr(k,0) = fBir(k,0) — f717(k,0)

. sin(0/2) fmag Py(cos 0)
= —wka{T + l;‘] @ —l1)(2z+3)}' (11)

Here, the appropriate value of l,,4; is determined by the additional constraint that no partial
wave | > l,,,, penetrate into the region where V, is substantially different from V. We
will show that the value of [,,,,, needed to satisfy this additional assumption is significantly
larger for intermediate collision energies than the value needed to satisfy the FBA alone.
A good method for determining ;4. is to compare (for a given collision energy) the
phase shifts 6lB LR obtained from the FBA using Vrr with the phase shifts obtained from
the FBA and full scattering methods when the actual interaction potential Vj, is used,

(5lB and d;, respectively. The respective Born phase shifts are given by [Mott and Massey



1965

tan(6P) = —2k / (7 5y (k)2 Vi () i, (12)
0
and by [O’Malley et al 1962]
2
fan(651m) = mak for 1> 1. (13)

(2l -1)(21+1)(21 + 3)

Results for positron-Ar elastic collisions calculated in the Distributed Positron Model
(DPM) [Gibson 1990, 1992] are presented in table 1 for scattering energies of 5 and 200
eV. In this method, a modified adiabatic approach that approximates (nonadiabatic) short-
range correlation effects is used to calculate the polarization component of the positron-atom
interaction potential. The total interaction potential is then obtained by adding a near-
Hartree-Fock static field to the polarization potential. As currently implemented, the DPM
does not account for energy-dependent, inelastic, or rearrangement effects. Details of the
DPM calculation for positron-Ar and positron-Ne scattering will be presented elsewhere
[Gibson et al 1995]. It is clear from the values in table 1 that for 5 eV the FBA using
the full interaction potential provides excellent agreement (5% or better) with the actual
scattering phase shifts for [ > 3 and that the long-range FBA phase shifts are also in
reasonable agreement (no worse than 23%) for this range. The situation at 200 eV is
significantly different. The results for 200 eV show that the full-potential FBA phase shifts
6P are (aside from [ = 6, where the phase shift is passing through 0) still in good agreement
(better than 20%) with §; for [ > 1. However, the long-range-potential FBA phase shifts
(5lB LR not only disagree with §; in magnitude for | < 10, but are opposite in sign for [ < 7.
Similar results are observed for a collision energy of 100 eV (not shown). Thus, if Vi is
used for all r, then a value of [,,,,, > 10 for collision energies on the order of 200 eV must
be used in equation (11) and in equation (1), whereas lpq; = 4 is sufficient if Vj, is used

instead.



Table 1: Elastic e™-Ar scattering phase shifts at 5 and 200 eV’

5eV 200 eV
L] &Ry 8Pk 87 (k) | ak) 0P (R) 7R (R)
0 |-0.2917 -1.2853 —_— 0.8071 -1.3815 —
1| 0.2339 0.1759 0.6980 | -1.3605 -1.1327 1.5410
2| 0.1457 0.1314  0.1193 | -0.7762 -0.8193 1.3651
3| 0.05617 0.0493 0.0399 | -0.4190 -0.4919 1.0116
4| 0.0207 0.0204 0.0182 | -0.2014 -0.2395 0.6282
51 0.0103 0.0102 0.0098 | -0.0730 -0.0864  0.3728
6 | 0.0060 0.0060 0.0059 | -0.0014 -0.0048 0.2305
7 | 0.0038 0.0038 0.0038 | 0.0354 0.0350  0.1507
8 | 0.0026 0.0026 0.0026 0.05616 0.05618  0.1035
9| 0.0019 0.0019 0.0019 | 0.0560 0.0561  0.0741
10 | 0.0014 0.0014 0.0014 | 0.0541 0.0540 0.0548

The reason that a much larger value of ;45 is required for AfPLR is due entirely to
the physics of the centrifugal barrier. At intermediate collision energies, more partial waves
penetrate the intermediate- and near-target regions where V, is quite different from Vi gp—
for example, near the target the actual potential is strongly repulsive, while the long-range
form is everywhere attractive. Thus, only those higher partial waves that fail to sample the
inner region of the potential will be accurately represented in a closure scheme that uses
AfBLr_ This is illustrated in figure 1 where, for I = 4 and I = 5 at 200 eV scattering
energy, the effective potentials and scattering solutions for V,, and VLr are shown. A
comparison of the effective potential curves and the classical turning points shows that the
Ricatti functions have substantial amplitude over the region where the effective potentials
bifurcate. It can also be seen that the FBA scattering solution j£ is quite close to the actual
solution u4 and that for [ = 5 the two solutions are barely distinguishable on the graph.

However, the actual scattering solutions for Vi g are distinctly different, which demonstrates
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Figure 1: Effective potentials for [ = 4 and | = 5 at 200 eV thick solid curve (Vs‘;ﬂ); thick
chain-dashed curve (V£%). Also shown are the scattering energy (thick dashed curve) and
the classical turning radius (r;) for V;;,ﬂ. The scattering solutions for Vj, are shown as

the thin solid lines (u4 and ws), while the solutions for V,r are shown as the thin chain-

dashed curves (uf® and uf%). For comparison the zero-potential, Ricatti-Bessel functions

are plotted as the thin dashed lines (j£ and j£).

that the centrifugal barrier term is insufficient to keep these partial waves from sampling at
least some of the region where the two potentials deviate. Due to the difference in sign of
the short-range effective potentials, these discrepancies are more pronounced for positron
collisions than for electron collisions. Such a dichotomy has been observed by McEachran
and Stauffer (1986) who report using l,,,, = 6 for electron and [l,,,; = 13 for positron
collisions with He, Ne, and Ar up to 250 eV.

As shown in the figure and table above, the appropriate value of [,,,,, when Vpp is
used is significantly larger than is required for just the validity of the FBA. Although
calculating Af? requires more numerical work than does A fBrr  this effort is more than
offset at higher collision energies by not having to include additional partial waves in the

computation of f;. For efficiency we utilize a Born r-closure procedure [Morrison et al



1984] for computing f2 (see equation (10)) that makes use of the closed form expressions

available for leLR [Nesbet and Geltman 1986], viz

Bk = AfP+ £
— 2@+ 1) /0 " B2 (Vip(r) — Vig(r)) dr

Tak
+ Q- 1)@ +3) for (1 >1). (14)

For [ = 0 we use
By = —2{ X [ sin2(kr) Vi, (r)d & (14 [2(krm)? — 1] cos(2k
J8) = —2igg [ st Viplr)dr — oo (1 [2(krm)® = 1] cos(2krn)
+ kg sin(2kry,) + 4(kry)3 si(2krm))}. (15)

This formulation allows us to restrict the numerical integration to a finite region while still

including contributions from all space in the scattering amplitude.
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Figure 2: e™—Ar elastic DCS at 200 eV using (a) Vg and (b) Vip: Solid (lnee = 10); Dot
(lmaz = 6) ; Dash (lner = 4).

Finally, we demonstrate the effect of an inappropriate choice of [,,,4, on the elastic DCS

calculated using Born closure at 200 eV. In figure 2(a) we show the results obtained using
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AfBrr_ Although each DCS shown contains contributions from all partial waves, there
remains a strong dependence on the value of l,;,4,,. The corresponding DCS when the full
interaction potential is used to compute Af? are shown in figure 2(b). Tt is exquisitely
clear that the Born closure results obtained using the actual interaction potential do not
show a strong dependence on [,,; and that, in fact, a value of l,,,,, = 4 is sufficient. It
should be pointed out that the discrepancies seen in figure 2(a) will diminish with scattering
energy and are solely a consequence of selecting too small a value of [,,4;, rather than some
inherent flaw in the formulation of AfBZ%. Even if an actual closure scheme is not used, but
higher-order partial-wave contributions are included via equation (13), too small a choice
of l;nqe Wwill result in similar shortcomings.

In summary, we have shown that although closure schemes based on the FBA remain
an excellent way to ensure partial-wave convergence in the elastic DCS, considerable care
must be exercised if additional approximations such as replacing the interaction potential
by its asymptotic form Vpr for all space are used. For intermediate scattering energies,
such an approximation will (at best) require that many more partial waves be included
in the full scattering calculation, especially for positron collisions with highly-polarizable
systems where the region that V7 r deviates from Vj, extends further from the target. For
positron-atom collisions at intermediate energies we find that a closure scheme using the
full interaction potential is efficient, reliable, and offers a clear means of determining an

appropriate value for l,,4;.
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