The vibratory world of termites

Ra Inta, The Centre for Gravitational Physics, ANU

Assumptions

Linearise Einstein field equations: $G^{\mu\nu} = 8\pi G/c^4 T^{\mu\nu}$

By imposing constraints on metric tensor: $g^{\mu\nu} = \eta^{\mu\nu} + h^{\mu\nu}$

where $h^{\mu\nu}$ is a small perturbation ($|h^{\mu\nu}| << 1$) about Minkowski (flat) metric $\eta^{\mu\nu}$

Termite perturbation tensor

Assume undulatory form for $h^{\mu\nu}$

However, because termites are very little insects, their perturbation tensor has to be written very small also:

$$h^{\mu\nu}_{\text{termite}} \rightarrow h^{\mu\nu}_{\text{termite}}$$

The vibratory world of termites

The Centre for Gravitational Physics,

Ra Inta,

ANU

Antennae

- 1. Justification/background
- 2. Vibration as an information source
- 3. Vibration as a survival aide
- 4. Vibration as a communication channel
- 5. Applications: exploiting termites' vibrations

1: Justification: why termites?

Termites are evil!

- High cost: A\$ 800M per year, US\$5-10 G worldwide
- Complex, successful societies---more so than humans (biomass, anyway)

Vibrations: mounding evidence

It has been known for more than 2,000 years that termites use vibrations in communication: Their name is derived from the Greek 'Termes', meaning 'the end'.

Henry Smeathman reports to the Royal Society (1781)

Biological clues

- •(Eu)social, complex societies
- •Blind
- •Limited pheremonal repertoire
- •Simple (10⁵ nerve cells in cerebral ganglia)
- Pathetic
- •Over 80% of arthropod species use vibration
- •Sensitive mechanoreceptors in termites
- •Observed responses to vibrations

Threshold of subgenual organ: θ~0.2 nm

S.R. Shaw: "Re-evaluation of the absolute threshold and response mode of the most sensitive know vibration detector, the cockroach's subgenual organ: A cochlea-like displacement threshold and a direct response to sound," *Journal of Neurobiology*, **25**(9), *pp*.1167-1185 (1994)

2: Vibration as an information source

Termites use vibrations to gather information about food sources, competitive species and other potential dangers

- Background
- Characteristics of feeding and mechanical signals and material properties
- Bioassay experiments

Assessment of food structures

Classic experiment (opposite blocks) a result/extension of Lenz

Lenz, M.: "Food resources, colony growth and caste development in wood-feeding termites," in Nourishment and Evolution in Insect Societies, Oxford and IB H Publishing Co. Pty. Ltd. (1994)

Somehow, termites know the extent of their food resources and make reproductive decisions based on this.

Control of substrate

TANOES

Measurement of foraging signals

景

Beam mechanics

Food substrate acts like a free-free beam

Animation courtesy of Dr Dan Russell, Kettering University

Dominant signal is of the substrate

Bioassays

- Opposite blocks, choice experiments
- Species: Cryptotermes domesticus and Cr. secundus
- Fourteen days at 30 deg. C, 80% R.H.
- Preference measures: Tunnelling activity, movement
- Have to interpret results using statistics

Cryptotermes secundus

Good test termite because:

- •Can seal them into blocks of wood
- Prefer larger blocks

Termites assess wood size using vibration signals

T.A. Evans, J.C.S. Lai, E. Toledano, L. McDowall, S. Rakotonarivo and M. Lenz, "Termites assess wood size by using vibration signals", *Proceedings of the National Academy of Science USA* **102**, 3732-3737 (2005)

Playback experiments positively show *Cr. domesticus* use vibrations, preferring *smaller* blocks of wood

Photo courtesy of CSIRO

What are they responding to in the signal?

Assumption: simple animal \rightarrow simple feature of vibratory signal

Not clear that they respond to substrate only or convolved with voiceprint

For simple geometry, and material, the key measure could be either:

- i. Frequency (f_0)
- ii. Amplitude of acceleration (|**a**|=|**F**|/m)
- iii. Damping (Q)?
- iv. Time of flight (Δt)?

Material properties

Material	Speed of sound, c	Density, <i>p</i>	Damping factor, d
	(m s ⁻¹)	(kg m ⁻³)	
Aluminium	5040±103	2700±28	10-4
Pinus radiata	4930±100	420±30	10-2
EPDM rubber	45±1	504±30	10-1

Frequency (Hz)

Results: tunnelling

Results: movement

Al freq.

Rubber freq.

Al mass

Rubber mass

Summary:

Termites always preferred the blocks with the most amount of wood, implying a very high level of sophistication (*i.e.* not a single simple measure i-iv)

Termites gain information about wood size using vibration signals

- Playback experiments---therefore vibrations
- Specific vibrations: their own species foraging (unaffected by pink noise, deterred by other species)

Inta, R. Evans, T.A., Lai, J.C.S. and Lenz, M.: "What do vibrations have to do with termites' food choice?," *Acoustics Australia*, **35**(3), pp. 73-77 (2007)

T.A. Evans, J.C.S. Lai, E. Toledano, L. McDowall, S. Rakotonarivo and M. Lenz, "Termites assess wood size by using vibration signals", *Proceedings of the National Academy of Science USA* **102**, pp. 3732-3737 (2005)

They can also distinguish material properties

- Not clear that they respond to substrate only or voiceprint
- Simple geometry; key measure could be f₀,
 a=F/m, Q or Z

R Inta, JCS Lai, EW Fu and TA Evans: "Termites live in a material world: exploration of their ability to differentiate between food sources," J. R. Soc. Interface **4**(15), pp.735-744 (2007)

Rapidity of response

- Able to assess and make decisions relatively quickly
- Good correlation between tunnelling and movement in first five days
- Significant results in running on vibratory 'mazes'

Evans, T.A., Inta, R., Lai, J.C.S. and Lenz, M.: "Foraging vibration signals attract foragers and identify food size in the drywood termite, *Cryptotermes secundus*," *Insectes Sociaux*, **54**(4), pp. 374-382 (2007).

'T-maze' set-up

а

Treatment

Conclusion: how do termites gain information about food structures?

- Not known exactly, but is vibratory in nature and highly sophisticated
- Cannot be only: f₀
- Cannot be only: total mass
- Could be: Q
- Could be: Z

3: Vibration as a survival aide

- Invasive strategies
- Detection of other termite species

Invasive strategies

Crypt. domesticus (native, non-invasive): prefers smaller blocks of wood

Crypt. secundus (introduced, highly invasive): prefers *larger* blocks of wood

...highly invasive termite species prefer *smaller* blocks of wood!

Distinguishing friend from foe

Results 100 80 Proportion tunnel length 60 40 20 0 Rec'd Live Rec'd Live Control Cryptotermes *Coptotermes*

Termites can distinguish their own vibrations from those of competitors

Evans, T.A., Inta, R., Lai, J.C.S., Prueger, S., Foo, N.W., Fu, E.W. and Lenz, M.: "Termites eavesdrop to avoid competitors," *Proceedings of the Royal Society B* (accepted for publication, 26pp., July 2009)

4: Vibration as a communication channel

Termites are highly social, so have to communicate

- Two main uses of vibratory signals in communication:
- 1. Feeding
- 2. Alarm

Cryptotermes experiments (feeding) Attracted to similar species, deterred by competitive species

Most obvious signals: vibratory alarm

- Alarm signals produced by soldiers when they perceive a danger to the colony (mechanical breach, vibration, toxic fungal spores)
- Universal response from workers: Flee!

R. Inta, T.E. Evans, and J.C.S. Lai: 'Effect of Vibratory Soldier Alarm Signals on the Foraging Behavior of Subterranean Termites (*Isoptera: Rhinotermitidae*),' *Journal of Economic Entomology*, **102**(1), pp.121-126 (February 2009)

Signal encoding

Type of encoding in signal (spectral *vs.* temporal) *e.g.* tonal language (Cantonese, Thai) *vs.* Morse code

Alarm signals probably independent of carrier frequency---not always very well understood in the literature

5: Applications: exploiting termites' vibrations

Non-chemical termite control

Evans, TA, Lenz, M, Lai, JCS and Inta, RA: "Method and System for Controlling Termites," Patent Application Number: PCT/AU2007/000215 (WIPO Patent WO/2007/095693) (August 30, 2007).

Next generation

- Signal synthesis: don't know temporo-spectral features termites respond to
- 'Passive sonar' mode: DSP triggering
- 'Active 'sonar' mode: elicit behaviour

6: Future work

- Separate substrate from voiceprint of vibratory signals---signal processing
- Material properties: Q or Z? ---New experiments
- Direct determination of frequency : frequency shift

Direct measurement of frequency preference

Frequency shift:

We know that termites are attracted to foraging signals in larger blocks of wood.

We can alter the frequency information in the signal but retain the temporal structure \rightarrow phase vocoder algorithm

Manipulation of preference using geometry

Problematic! Variability of wood and construction of geometry Plausible mechanism: assessment of structures using vibrations. Experiments in field and laboratory.

Problematic!

Bioinspired vibration sensors

Image (without permission) from:

http://scienceblogs.com/pharyngula/2006/10/evolution_of_sensory_signaling.php

Subgenual organ: tiny accelerometer?

Image: Elizabeth Inta

DSP applications

Termites only have ~100,000 nerve cells in the central ganglium (pinhead size), yet are able to process vibratory signals buried in noise.

Distributed signal (pre-)processing

Depends on vibratory features used (e.g. Temporal/rate encoding vs. spectral encoding)

Parsimony of biologically based neural processors?

- Correlation with electrophysiological responses: better test validation
- Encoding type
- Information theory
- Limitations on processing efficiency of neural system (assessment and communication)

Thanks!

Professor Joseph Lai (UNSW@ADFA) Dr Theodore Evans (CSIRO Entomology) Support staff and students Australian Research Council (Discovery grant DP0449825)

Ra.Inta@anu.edu.au

Australian Government

Australian Research Council

