Why Does a Guitar Need a Body to Make Sound?

Ra Inta, Texas Tech University

Making guitars...

The Experimental Instruments

Engelmann Spruce

Sitka Spruce

Western Red Cedar

... and measuring guitars

"I've seen guitars without bodies"

Electric guitars don't count!

The Helmholtz resonator

 $f_H = \frac{c}{2\pi} \sqrt{\frac{S}{Vl}}$

Where is the 'throat' of the resonator?

It's the end 'correction'!

$$\ell' = \left(\frac{8}{3\pi}\right)R \sim 0.85R$$

Here: R=48.0 mm So: l' ~ 41 mm (each side)

Helmholtz resonance of this guitar

Volume: 16.60 litres = $1.66 \times 10^{-2} \text{ m}^3$

Radius of soundhole: 48.0 mm

Calculated f_H: 122.1 Hz

Measured f_H: 120.0 Hz

Coupled oscillators

A circuit diagram of the guitar!

Coupled resonators split frequencies

Vibrations of the sound-board (top)

Dynamic mass (kg)

Thanks for listening!