

Acceleration of parallel algorithms using a heterogeneous computing system

Ra Inta, Centre for Gravitational Physics, The Australian National University NIMS-SNU-Sogang Joint Workshop on Stellar Dynamics and Gravitationalwave Astrophysics, December 18, 2012

Overview

- 1. Why a new computing architecture?
- 2. Hardware accelerators
- 3. The Chimera project
- 4. Performance
- 5. Analysis via Berkeley's 'Thirteen Dwaves'
- 6. Issues and future work
- 7. Conclusion

Why do we need new computing architectures?

- We live in an increasingly data-driven age
- LHC experiment alone: data rate of 1 PB/s
- Many data-hungry projects coming on-line
- Computationally limited (most LIGO/Virgo CW searches have computation bounds)

Demand side...

Performance trend of global top 500 supercomputing systems

(adapted from <a>www.top500.com , August 2012)

....supply side

- Intel discontinued 4GHz chip
- Speed walls
- Power walls
- Moore's Law still holds, but for multicore

need killer apps with lots of latent parallelism.

Time for a change in high performance computing?

- Focus on throughput, rather than raw flop/s (e.g. Condor on LSC clusters)
- Focus on power efficiency (top500 'Green list')

Hardware acceleration

- Response to computational demand
- Two most common types: Graphical Processor Unit (GPU) and Field Programmable Gate Array (FPGA)

Central Processing Unit	Graphical Processing Unit	Field Programmable Gate Array
CPU	GPU	FPGA

The Graphical Processor Unit

- Subsidised by gamers
- Most common accelerator
- Excellent support

(nVidia)

SM Benchmar					
	In	structio	on Cach	e	
War	Warp Scheduler			p Schedı	ıler
Dis	Dispatch Unit		Dis	patch Ur	nit
	Ŧ			Ŧ	
	Registe	er File (3	2,768 x	32-bit)	
+	+	+	+	+	+
Core	Core	Core	Core	LD/ST LD/ST	
				LD/ST	SFU
Core	Core	Core	Core	LD/ST	
0			0	LD/ST	
Core	Core Core Co	Core	LD/ST	OFU	
Corro	Com	Corro	Corre	LD/ST	550
Core	Core	Core	Core	LD/ST	
Coro	Coro	Coro	Coro	LD/ST	
Core	Core	Core	Core	LD/ST	SELL
Core	Core	Core	Core	LD/ST	550
Core	Core	Core	Core	LD/ST	
Core	Core	Core	Core	LD/ST	
				LD/ST	SEU
Core	Core	Core	Core	LD/ST	010
				LD/ST	
	Int	erconne	ct Netwo	rk	
	64 KB Sł	nared Me	mory / L	1 Cache	
		Uniform	Cache		
Tex		Tex	Tex		Гех
		Texture	Cache		
	P	olyMorp	h Engine	Viewn	ort
Vertex	Fetch	Tesse	llator	Transf	orm
	Attribut	te Setup	Stream (Output	

CUDA Core Dispatch Port

Operand Collector

Result Queue

INT Unit

FP Unit

The Field Programmable Gate Array

Programmable hardware ('gateware') replacement for application-specific integrated circuits (ASICs)

Cultural differences

- GPUs: software developers
- FPGAs: hardware, electronic engineers

FPGA development is a lot less like traditional microprocessor programming! (VHDL, Verilog)

Platform	Pros	Cons
CPU	Analysis 'workhorse,'	Power hungry, limited
	multi-tasking	processing cores
GPU	Highly parallel, fairly	Highly rigid instruction set
	simple interface (e.g.	(don't handle complex
	C for CUDA)	pipelines)
FPGA	Unrivalled flexibility	Expensive outlay,
	and pipelining	specialised programming
		interface, prohibitive
		development time

Choosing the right hardware

Highly algorithm dependent, e.g.

- Dense linear algebra: GPU
- Logic-intensive operations: FPGA
- Pipelining: FPGA

The 'Chimera' project

- Appropriately(?) combine benefits of three hardware classes
- Commercial, off the shelf (COTS) components
- Focus on high throughput, energy efficiency

(Image: E. Koehn)

Subsystem	Vendor	Model
CPU	Intel	i7 Hexacore
GPGPU	nVidia	Tesla C2075
FPGA	Altera	Stratix-IV

Photograph of an implementation of the system. Because of the three hardware classes, we named the system the 'Chimera,' after the mythical Greek beast with three different heads.

Performance

Throughput:

- FPGA alone: 24 ×10⁹ samp/s
 - GPU alone: 2.1×10⁹ samp/s
 - CPU alone: 10 ×10⁶ samp/s

Surprising!

- FPGA pipeline was highly optimised
- Expect GPU to perform better with more complicated (floating point) integration problems
- Expect CPU to have even worse performance

Normalised cross-correlation

video compression

Searched 1024×768 pixel image (16-bit greyscale) for a 8×8 template

Numerator
GPU, 158 frame/s

So much for a *Graphical* Processor Unit!

Denominator

GPU: 894 frame/s FPGA: 12,500 frame/s Best combination: GPU + FPGA

Other algorithms

- Data analysis
- Interface GPUs with experimental FPGA DAQ systems (GMT, quantum cryptography)

R. Inta, D. J. Bowman, and S. M. Scott, "The 'Chimera': An Off-The-Shelf CPU/GPGPU/FPGA Hybrid Computing Platform," *Int. J. Reconfigurable Comp.*, 2012(241439), 10 pp. (2012)

The Thirteen Dwarves of Berkeley

- Phillip Colella identified 7 classes of parallel algorithms (2004)
- A dwarf: "an algorithmic method encapsulating a pattern of computation and/or communication"
- UC Berkeley CS Dept. increased to 13

K. Asanovic and U C Berkeley Computer Science Department, "The landscape of parallel computing research: a view from Berkeley," *Tech. Rep. UCB/EECS-2006-183*, UC Berkeley (2005)

	Dwarf	Examples/Applications
1	Dense Matrix	Linear algebra (dense matrices)
2	Sparse Matrix	Linear algebra (sparse matrices)
3	Spectral	FFT-based methods
4	N-Body	Particle-particle interactions
5	Structured Grid	Fluid dynamics, meteorology
6	Unstructured Grid	Adaptive mesh FEM
7	MapReduce	Monte Carlo integration
8	Combinational Logic	Logic gates (e.g. Toffoli gates)
9	Graph traversal	Searching, selection
10	Dynamic Programming	'Tower of Hanoi' problem
	Backtrack/Branch-and-	
11	Bound	Global optimization
12	Graphical Models	Probabilistic networks
13	Finite State Machine	TTL counter

*Fixed point^Floating point

Issues/future work

- Kernel module development
- Scalability is problem-size dependent
- FPGA development is labour-intensive
- Pipeline development
- GW data analysis!

Issues/future work

Issues/future work

- Kernel module development
- Scalability is problem-size dependent
- FPGA development is labour-intensive
- Pipeline development
- GW data analysis!

Conclusion

- We are in a transition period for HPC architecture
- Can exploit highly heterogeneous, COTS, hardware accelerators for certain algorithms
- Powerful and energy efficient
- Requires further development

More information:

www.anu.edu.au/physics/cgp/Research/chimera.html

Thanks to NIMS and Seoul National University!

- Dr Sang Hoon Oh
- Dr John J. Oh

Thanks for listening!

Ra.Inta@anu.edu.au

