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Why do we need new computing 

architectures? 

• We live in an increasingly data-driven age 

• LHC experiment alone: data rate of 1 PB/s 

• Many data-hungry projects coming on-line 

• Computationally limited (most LIGO/Virgo 

CW searches have computation bounds) 
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Demand side… 
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(adapted from www.top500.com , August 2012) 

http://www.top500.com/


…supply side 

• Intel 

discontinued 

4GHz chip 

• Speed walls 

• Power walls 

• Moore’s Law  

still holds, but for 

multicore 
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Time for a change in high performance 

computing? 

• Focus on throughput, rather than raw 

flop/s (e.g. Condor on LSC clusters) 

• Focus on power efficiency (top500 ‘Green 

list’) 
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Hardware acceleration 

• Response to computational demand 

• Two most common types: Graphical 

Processor Unit (GPU) and Field 

Programmable Gate Array (FPGA) 
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The Graphical Processor Unit 

8 

• Subsidised by gamers 

• Most common accelerator 

• Excellent support  

(nVidia) 

 



The Field Programmable Gate Array 

Programmable hardware (‘gateware’) 

replacement for application-specific 

integrated circuits (ASICs) 
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Cultural differences 

• GPUs: software developers 

• FPGAs: hardware, electronic engineers 
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FPGA development 

is a lot less like 

traditional 

microprocessor 

programming! 

(VHDL, Verilog) 



Platform Pros Cons 

CPU Analysis ‘workhorse,’ 

multi-tasking 

Power hungry, limited 

processing cores 

GPU Highly parallel, fairly 

simple interface (e.g. 

C for CUDA) 

Highly rigid instruction set 

(don’t handle complex 

pipelines) 

FPGA Unrivalled flexibility 

and pipelining 

Expensive outlay, 

specialised programming 

interface, prohibitive 

development time 
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Choosing the right hardware 

 

Highly algorithm dependent, e.g. 

 

• Dense linear algebra: GPU 

• Logic-intensive operations: FPGA 

• Pipelining: FPGA 
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The ‘Chimera’ project 

• Appropriately(?) combine 

benefits of three hardware 

classes 

• Commercial, off the shelf 

(COTS) components 

• Focus on high throughput, 

energy efficiency 

13 

(Image: E. Koehn) 



Initial design 
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PCI Express 

COTS constraints 



Subsystem Vendor Model 

 

CPU Intel i7 Hexacore 

 

GPGPU nVidia Tesla C2075 

 

FPGA Altera Stratix-IV 
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Performance 

17 



(32-bit integer (x, y) pairs) 

Throughput: 

• FPGA alone: 24 ×109 samp/s 

• GPU alone:   2.1×109 samp/s 

• CPU alone:   10 ×106 samp/s 
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                           Surprising! 

• FPGA pipeline was highly optimised  

• Expect GPU to perform better with more complicated 

(floating point) integration problems 

• Expect CPU to have even worse performance 



• image processing  

• synthetic aperture arrays 

(SKA, VLBA) 

• video compression 
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Searched 1024×768 pixel image (16-bit 

greyscale) for a 8×8 template 

 

• Numerator  

GPU, 158 frame/s 

 

• Denominator 

GPU:        894 frame/s 

FPGA: 12,500 frame/s 
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So much for a 

Graphical 

Processor Unit! 

 

Best combination:  

GPU + FPGA 



• Data analysis 

• Interface GPUs with 

experimental FPGA DAQ 

systems (GMT, quantum 

cryptography) 
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The Thirteen Dwarves of Berkeley 

• Phillip Colella identified 7 classes of 

parallel algorithms (2004)  

• A dwarf: “an algorithmic method 

encapsulating a pattern of computation 

and/or communication” 

• UC Berkeley CS Dept. increased to 13 

22 

K. Asanovic and U C Berkeley Computer Science Department, “The landscape of 

parallel computing research: a view from Berkeley,” Tech. Rep. UCB/EECS-2006-

183, UC Berkeley (2005) 



  Dwarf Examples/Applications 

1  Dense Matrix        Linear algebra (dense matrices)  

2  Sparse Matrix       Linear algebra (sparse matrices)  

3  Spectral        FFT-based methods 

4  N-Body          Particle-particle interactions 

5  Structured Grid     Fluid dynamics, meteorology  

6  Unstructured Grid       Adaptive mesh FEM  

7  MapReduce           Monte Carlo integration  

8  Combinational Logic     Logic gates (e.g. Toffoli gates)  

9  Graph traversal     Searching, selection  

10  Dynamic Programming    ‘Tower of Hanoi’ problem  
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 Backtrack/Branch-and-

Bound      Global optimization  

12  Graphical Models       Probabilistic networks  

13  Finite State Machine   TTL counter  
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*Fixed point 

^Floating point 



Issues/future work 

• Kernel module development 

• Scalability is problem-size dependent 

• FPGA development is labour-intensive 

• Pipeline development 

• GW data analysis! 
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Conclusion 

• We are in a transition period for HPC 

architecture 

• Can exploit highly heterogeneous, COTS, 

hardware accelerators for certain algorithms 

• Powerful and energy efficient 

• Requires further development 
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More information:  

www.anu.edu.au/physics/cgp/Research/chimera.html 

  

http://www.anu.edu.au/physics/cgp/Research/chimera.html


Thanks to NIMS and Seoul National 

University! 

• Dr Sang Hoon Oh 

• Dr John J. Oh 
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Thanks for listening! 
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