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Sparse methods SYPH 11 |S

A vector is S-sparse If it has at
most S non-zero coefficients.
(‘Compressible’ if you can
ignore many components)

Wide application: B~ Yie
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The twelve ball problem

You're given 12 identical balls, except Using only a simple scale balance,
exactly one is heavier/lighter than what is the minimum number
the others. of measurements required to

determine the odd ball?

o

Here, the ball mass representation has a sparsity of S=1
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sSuccess stories

« JPEG-2000 format.
Only need about 10%
coefficients

* The internet would be a
beautiful but empty
landscape without
sparse-based
compression
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Modern sparse methods

« Advances in image processing

* Funny andecdote (Nyquist, Nyquist
Nyquist)

* Terry Tao (2006)
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Compressive sampling (CS)

* Also known as ‘compressed sensing’

* Malin result: quantitative circumvention of
Shannon-Nyquist sampling theorem



Australian
 National

3

' :

= =y Universit
D1y coS J

Compressive sampling in a nutshell

* Unified framework for
encoding/reconstruction of sparse signals

« Applications from radar, Herschel space
observatory, to a single pixel camera

E. Candes, J. Romberg and T.
Tao: IEEE Trans. on Information
Theory 52(2):489-509 (2006)

Image: M. F. Duarte et al., Rice University
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Linear measurement system

hy=®xﬂ

Measurement vector Original signal
(1 XM) (1 XN)

@ — (I) \‘lj\ Sparse basis

\ (N X N)

Sensing matrix
(M XN)

Determined system: M = N
CS (‘under-determined’): M << N
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Solve for x by explicitly imposing sparsity constraint:
min||x||, subjectto [y —0Ox||, =0

Bmtlixélzaﬂeo’blﬁ'—mi%t@imepml@rnm)
(guess NC,, combinations for large N, moderate M)
M

CS: Almost as good (especially for large N):

min||x||; subjectto ||y —0x]||, =0
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Problems with noise? Relax!

min||x|[; subjectto ||y —0x]||, <€

For some total noise/compressibility residual e

10
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Linear program

» Optimisation reconstruction methods
* E.g. Simplex method (linear constraints

give convex polytope)

Optimal point

Travel along vertices
to global optimum

Starting point

11
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Orthogonal matching pursuit (OMP)

Initialise signal and residual vector and Recu rS|Ve g reedy algorlth m

determine stopping criterion

\ 4

Get signal estimate from most
significant column of residual vector

<€—] Update signal basis and residual vector

e Similar to CLEAN
No algorithm (radio
astronomy)
« ‘Easy’ to implement
noise-based stopping
criteria

Is the stopping
criterion met?

End

12
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Headline CS results

Can determine minimum number of samples required for
perfect reconstruction:

M > C S u® log(N)

Where C is small (~0.5) , and the mutual coherence:

T \/Nl.rrjlgﬁl<<0i,¢j>l

Measures how ‘spread out’ the signal is in the sampling domain

13
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Mutual coherence

Guarantees sampled low dimensional subspace sufficiently
covers sparse basis (Restricted Isometry)

e.g. Delta functions in Fourier domain are minimally
coherent with time domain:

. 1
U= \/legxf 5(f — fi)e™tdt = \/N\/—N

E. Candes and J. Romberg, Inverse Problems 23:969-985 (2007)

14
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CS applications

Basic ingredients:

1. Sparse/compressible
representation

2. Low mutual coherence between
sensing and sparsity bases

15
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Sparse fast Fourier transform (SFFT)

* Implements non-recursive OMP
« Computational complexity for known sparsity S:

O(S log(N))

Compare to FFT [O(N log(N))]:
Speed-up is O(N/S), so e.g., for N=10° , S=100 :

Here sFFT is (theoretically) 10,000 times as fast
as FFT!

Hassanieh, H., Indyk, P., Katabi, D., and Price, E.: “Nearly Optimal
Sparse Fourier Transform,” arXiv 1201.2501v1 (12 Jan 2012)

16
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How the sFFT works

Recall:
FFT: output proportional to N: O( N log(N) )
SFFT: output proportional to S: O( S log(N) )

SFFT: very wide bins, permuted so each only contain (at most) single large coefficient

Leakage-free bin filter:
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Gaussian Co\r:'\lz::‘lved Box-car Gives Leakage-free bin filter
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» Very wide, tuned, bin size ( B ~ V(NS)
initially, decreasing as coefficients
identified)

« Leakage-free bin filters

» Use block recovery (i.e. not individual
coefficients)

* [teratively remove identified coefficients
from bins, not the signal

18
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Code available from http://groups.csail.mit.edu/netmit/sFFT/code.html
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Application 1: localisation of signals In

the time-frequency plane

Gravitational waves (GWSs) produced by

binary compact objects (neutron stars and

black holes)
Sparse in ‘chirp’ domain

Position information from GW signals
depends on timing

Nyquist limited

20



Australian
 National

d
. .
23 Universit
% 5
@) NS

Detection pipelines

 Omega, continuous wave-burst

* Look for excess energy in Gabor (time-
frequency) plane

 Omega: Sine-Gaussian wavelets:

(@) = 4 exp(CFE(x - 0?) exp(enilf(x — )

. (82];2)1/4

21
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An improvement: chirplets

« Chirplet approach: add chirp rate parameter, d:

—(2mf)? . d
P(t) =4 exp( (anf) (t —t)? ) exp (Zm [f(r -+ (- t)ZD
« Covers 10 times more parameter space than Omega

 SNR enhancement of 45% (range increase of ~40%)
« High SNR signal is sparse in the Chirplet domain

E Chassande-Mottin et al., CQG 27:194017 (2010)

22
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Chirplet: ten injections Chirplet: single injection
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Nyquist [imitations

* Nyquist limit in time-frequency plane (aliasing of chirplet
templates), so reduced timing precision

* Nyquist limit: equivalent to saying that for a linear system
with N unknown coefficients, require N equations to
determine system.

24
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QP reconstruction of neutron star GW signals
I I I I

08+

—+— Original sparse signal (S=10, N=1,024) ki
O Reconstructed signal (WM=100, 2=0.1)

Arnplitude (arbitrary)

02+

100 200 300 400 500 500 700 800 200 1000
Frequency (Hz)

OMP: Perfect reconstruction at 10% of Nyquist frequency

25
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How to deal with noise

Assuming Gaussian noise, Chi-squared with 4 d.f.

y=¢x+n x? ~ X1 (2)

-

?VN|?¢N

Xi(x; ¢,¥) =z4:

noting that p(x5 < 9.49) = 0.95, can get 95% C.I. from €2 = 9.49

26
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OMP reconstruction of noisy sparse signal (M/N = 0.085, £ = 3.0808)
1.2
I I I I I I

= Model signal

*  Model reconstruction

< Ornginal noisy signal

*  Reconstruction of noisy signal
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Issues

* Pure delta functions in time give maximum
u... Can'tuse CS

* LIGO/Virgo GW detectors most sensitive
~0O(100) Hz---confined to compact region
of Gabor plane

* Increased SNR---improve localisation of
transient events in Gabor plane

28
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localisation of signals in the time-

frequency plane

» Superior reconstruction of signals over
Wigner-Ville

* Applies very generally to signals in the
time-frequency plane that are not purely
Impulses In time

 Noise IS an Issue

29
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Application 2: Reducing computational
bounds with the skFFT

« Many tasks relying on spectral methods
searching for signal sparse in Fourier
domain (metrology, pulsar discovery,
radar, gravitational waves, imaging)

* Interesting problems have a serious
computational bound

30
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Scenario: continuous gravitational
waves

 Also applies to pulsar discovery
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Performance

* For a single 30 minute data stretch,
searching between 100-300 Hz, gives
N=720,000 (> 2"19)

 Randomised trails, for S=20, give run-times:
SFFT: 14.8 ms
FFTW3: 40.2 ms
- Speed-up of over 250% !!!

 For N~10°, this becomes > 467%

34
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Reducing computational bounds with
the sFFT

Potentially make many (~ 1 dozen) currently
borderline targets feasible; many more for
aLIGO

E.g.

« G350.1-0.3

* DA 495 (G65.7+1.2)

 Some estimates for Vela Jr. (G266.2-1.2)

35
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Future work

« Extend OMP code to 4D

 Produce a receliver operating
characteristic (ROC) curve for the sFFT

36
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Conclusion

« Sparse methods are very powerful

« Two applications to illustrate the methods

« Widely applicable to many problems in
physics

« Care needed with noise

37
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Thanks for listening!

Ra.Inta@anu.edu.au
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Answer:
3 measurements 1
e.g.:8 is heavier:

Solution to the

twelve-ball 2
problem (non- l
adaptive)

Encoded with trits
3° =27 possibilities

http://www.primepuzzle.com/leeslatest/12 ball solution.html (2006)
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