
New Applications of Sparse Methods in 

Physics 

Ra Inta, 

Centre for Gravitational Physics, 

The Australian National University 

 



2 

Sparse methods 

Wide application: 

• Syphilis in WWII 

• Image/file compression 

A vector is S-sparse if  it has at 

most S non-zero coefficients. 

(‘Compressible’ if you can 

ignore many components) 



The twelve ball problem 
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Here, the ball mass representation has a sparsity of S=1 



Success stories 

• JPEG-2000 format. 

Only need about 10% 

coefficients 

• The internet would be a 

beautiful but empty 

landscape without 

sparse-based 

compression 
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Modern sparse methods 

• Advances in image processing 

• Funny andecdote (Nyquist, Nyquist 

Nyquist) 

• Terry Tao (2006) 
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Compressive sampling (CS) 

• Also known as ‘compressed sensing’ 

• Main result: quantitative circumvention of 

Shannon-Nyquist sampling theorem 
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Compressive sampling in a nutshell 

• Unified framework for 

encoding/reconstruction of sparse signals 

• Applications from radar, Herschel space 

observatory, to a single pixel camera 
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Image:  M. F. Duarte et al., Rice University 

E. Candès, J. Romberg and T. 

Tao: IEEE Trans. on Information 

Theory 52(2):489–509 (2006) 



Linear measurement system 
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Determined system: M = N 

CS (‘under-determined’): M << N 
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Solve for 𝑥 by explicitly imposing sparsity constraint: 

min 𝑥 0 subject to 𝑦 − Θ𝑥 2 = 0 

But it’s a combinatorial problem! 

(guess NCM combinations for large N, moderate M) 

CS: Almost as good (especially for large N): 

min 𝑥 1 subject to 𝑦 − Θ𝑥 2 = 0 

( 𝑥 𝑝 =  𝑥𝑖
𝑝𝑝

  is the p-norm)   



Problems with noise? Relax! 
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min 𝑥 1 subject to 𝑦 − Θ𝑥 2 ≤ 𝜖 

For some total noise/compressibility residual 𝜖  



Linear program 

• Optimisation reconstruction methods 

• E.g. Simplex method (linear constraints 

give convex polytope) 
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Orthogonal matching pursuit (OMP) 

12 

Recursive greedy algorithm 

 

 

• Similar to CLEAN 

algorithm (radio 

astronomy) 

• ‘Easy’ to implement 

noise-based stopping 

criteria 



Headline CS results 
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Can determine minimum number of samples required for 

perfect reconstruction: 

𝑀 > 𝐶 𝑆 𝜇2  log(𝑁) 

Where C is small (~0.5) , and the mutual coherence: 

Measures how ‘spread out’ the signal is in the sampling domain 

𝜇 ≝  𝑁 max
𝑖,𝑗<𝑁
| < 𝜑𝑖 , 𝜓𝑗 > | 



Mutual coherence 
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Guarantees sampled low dimensional subspace sufficiently 

covers sparse basis (Restricted Isometry) 

 

e.g. Delta functions in Fourier domain are minimally 

coherent with time domain:   

E. Candès and J. Romberg, Inverse Problems 23:969–985 (2007) 

𝜇 = 𝑁max
𝑘
 𝛿 𝑓 − 𝑓𝑘 𝑒

𝑖2𝜋𝑓𝑡𝑑𝑡 =  𝑁
1

𝑁
= 1 



CS applications 
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Basic ingredients: 

1. Sparse/compressible 

representation 

2. Low mutual coherence between 

sensing and sparsity bases 



Sparse fast Fourier transform (sFFT) 

16 

• Implements non-recursive OMP 

• Computational complexity for known sparsity S:  

    O(S log(N)) 

 

Hassanieh, H., Indyk, P., Katabi, D., and Price, E.: “Nearly Optimal 

Sparse Fourier Transform,” arXiv 1201.2501v1 (12 Jan 2012) 

Compare to FFT [O(N log(N))]:  

Speed-up is O(N/S), so e.g., for N=106 , S=100 : 

  

Here sFFT is (theoretically) 10,000 times as fast 

as FFT! 



How the sFFT works 
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Recall: 

FFT:   output proportional to N: O( N log(N) ) 

sFFT: output proportional to S: O( S log(N) ) 

sFFT: very wide bins, permuted so each only contain (at most) single large coefficient 

Leakage-free bin filter: 
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• Very wide, tuned, bin size ( B ~ √(NS) 
initially, decreasing as coefficients 

identified)  

• Leakage-free bin filters 

• Use block recovery (i.e. not individual 

coefficients) 

• Iteratively remove identified coefficients 

from bins, not the signal 
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Code available from http://groups.csail.mit.edu/netmit/sFFT/code.html 

Threshold and identify non-zero bins 



Application 1: localisation of signals in 

the time-frequency plane 
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• Gravitational waves (GWs) produced by 

binary compact objects (neutron stars and 

black holes) 

• Sparse in ‘chirp’ domain 

• Position information from GW signals 

depends on timing 

• Nyquist limited 



Detection pipelines 

• Omega, continuous wave-burst 

• Look for excess energy in Gabor (time-

frequency) plane 

• Omega: Sine-Gaussian wavelets: 
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ψ τ = 𝐴 exp
−(2𝜋𝑓)2

𝑄2
(τ − 𝑡)2   exp 2𝜋𝑖 𝑓(τ − 𝑡)  

𝐴 = 
8𝜋𝑓2

𝑄2

1
4 

   



An improvement: chirplets 

• Chirplet approach: add chirp rate parameter, d: 

 

 

 

• Covers 10 times more parameter space than Omega 

• SNR enhancement of 45% (range increase of ~40%) 

• High SNR signal is sparse in the Chirplet domain 
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É Chassande-Mottin et al., CQG 27:194017 (2010) 

ψ τ = 𝐴 exp
−(2𝜋𝑓)2

𝑄2
(τ − 𝑡)2   exp 2𝜋𝑖 𝑓 τ − 𝑡 + 

𝑑

2
τ − 𝑡 2  
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Nyquist limitations 

• Nyquist limit in time-frequency plane (aliasing of chirplet 

templates), so reduced timing precision 

• Nyquist limit: equivalent to saying that for a linear system 

with N unknown coefficients, require N equations to 

determine system. 
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OMP: Perfect reconstruction at 10% of Nyquist frequency 
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How to deal with noise 

Assuming Gaussian noise, Chi-squared with 4 d.f. 

𝑦 = 𝜙𝑥 + 𝑛  𝑥2 ~ χ4
2(𝜆)

𝑁

𝑘=1

 

χ4
2 𝑥;  𝜙, 𝑦 =  

𝑛𝑘
2

𝜎𝑘
2 ≤ 𝜖

2

4

𝑘=1

 

noting that p(χ4
2 ≤ 9.49) = 0.95, can get 95% C.I. from 𝜖2 = 9.49 
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Issues 

• Pure delta functions in time give maximum 

𝜇… Can’t use CS 

• LIGO/Virgo GW detectors most sensitive 

~O(100) Hz---confined to compact region 

of Gabor plane 

• Increased SNR---improve localisation of 

transient events in Gabor plane 
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localisation of signals in the time-

frequency plane 

• Superior reconstruction of signals over 

Wigner-Ville 

• Applies very generally to signals in the 

time-frequency plane that are not purely 

impulses in time 

• Noise is an issue 
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Application 2: Reducing computational 

bounds with the sFFT 
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• Many tasks relying on spectral methods 

searching for signal sparse in Fourier 

domain (metrology, pulsar discovery, 

radar, gravitational waves, imaging) 

• Interesting problems have a serious 

computational bound 



Scenario: continuous gravitational 

waves 

• Also applies to pulsar discovery 
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Performance 
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• For a single 30 minute data stretch, 
searching between 100-300 Hz, gives 
N=720,000 (> 2^19) 

• Randomised trails, for S=20, give run-times: 

 sFFT:       14.8 ms 

 FFTW3:  40.2 ms 

  Speed-up of over 250% !!! 

 

• For N~106, this becomes > 467% 



Reducing computational bounds with 

the sFFT 
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Potentially make many (~ 1 dozen) currently 

borderline targets feasible; many more for 

aLIGO 

 

E.g. 

• G350.1-0.3 

• DA 495 (G65.7+1.2) 

• Some estimates for Vela Jr. (G266.2-1.2) 

 

 

 



Future work 

• Extend OMP code to 4D 

• Produce a receiver operating 

characteristic (ROC) curve for the sFFT 
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Conclusion 

• Sparse methods are very powerful 

• Two applications to illustrate the methods 

• Widely applicable to many problems in 

physics 

• Care needed with noise 
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Thanks for listening! 
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Ra.Inta@anu.edu.au 
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http://www.primepuzzle.com/leeslatest/12_ball_solution.html (2006) 

Solution to the 

twelve-ball 

problem (non-

adaptive) 

http://www.primepuzzle.com/leeslatest/12_ball_solution.html

