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                                          Sparse methods 
The most useful data and signals generally have a degree of redundancy or compressibility 
and this information may be exploited in powerful ways. 

For example, the highly successful JPEG-2000 image compression standard is based on the 
fact that most real images have a high degree of redundancy in a wavelet representation. 
The famous twelve ball problem (Figure 1) illustrates that you don’t need twelve linear 
measurements (equations) to solve for twelve unknowns if you know the solution is sparse. 

The amount of redundancy may be characterised by the number of non-zero (or 
non-negligible, in the case of compressible or noisy data) coefficients in the basis of interest, known 
as the sparsity, S, of the signal. The basis used to represent these signals is known as a sparse 
basis. For JPEG-2000, the sparse basis is a wavelet pixel space. For the twelve ball problem, 
the ball mass representation has a sparsity of S=1.

You have twelve identical balls,  except
exactly one is heavier/lighter than 
the others.

Using only a simple scale balance,
what is the minimum number 
of measurements required to 
determine the odd ball?

Figure 1: The twelve-ball problem. How many measurements does 
it take to find the odd ball? (Hint: less than twelve) 
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Figure 3: sFFT performance for varying FFT lengths. Compared to the currently most efficient implementation of the FFT, 
FFTW3, the sFFT performs as accurately but over 2.5 times the speed for a 20-sparse, ~500,000 point FFT. 

S = 20

Phenomenon (GW) Signal type Sparse basis/frame
Rota�ng non-axisymmetric 
neutron stars

Periodic Fourier domain

Binary compact object 
coalescense

Chirp/Gabor Chirplet/wavelet

Supernovae, other transients Impulse Time domain
Stochas�c GW background Correla�on Correla�on space

Table 1: Gravitational waves are sparse. Gravitational wave signals
are analysed in four main sparse representations. 

                                  Gravitational waves are sparse 
Much of the effort involved in sparse methods is in identifying a sparse basis. In a way, much of the 
description of physical phenomena involves finding a strongly sparse signal in a particular representation. 
In the case of gravitational wave (GW) data analysis, there are four main sparse representations, 
depending on the GW source (Table 1).

Ini�alise signal and residual vector and 
determine stopping criterion

Is the stopping 
criterion met?

Get signal es�mate from most 
significant column of residual vector Update signal basis and residual vector 

End

No

Yes

Figure 4: How Orthogonal Matching Pursuit works. This is a 
‘greedy algorithm’ that recursively searches for progressively less 
significant components, until a pre-determined stopping criterion is met.
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Figure 2: Leakage free bin filter. The assumption of sparsity means the sparse FFT can use very wide bin 
spacings. To reduce the number of recursions, leakage-free filters are used to bin coefficients. An example 
of such a filter is shown here: a Gaussian convolved with a box-car filter.

Recent developments [1] have produced a Fast Fourier Transform (FFT) implementation that exploits the sparse nature of 
underlying signals. This new implementation has very low relative computational complexity, and has been shown to be an optimum. 
The computational complexity for  an N-point FFT, with known sparsity S, is O(S log(N)), hence potentially giving a speed-up over 
the FFT ( O(N log(N) ) proportional to the sparsity of the signal. This speed-up is very generic, applying for all ranges of sparsity.

The algorithm implements a 
non-recursive Orthogonal Matching 
Pursuit, similar to the OFDM 
(Orthogonal Frequency Division 
Multiplexing) schemes used in 
telecommunications. 

Unlike the FFT, the assumption of 
sparse signals allows the use of very 
wide bin sizes: in the initial pass the 
number of bins used is √(SN). The 
identified coefficients are removed 
from these bins rather than from the 
signal, so that the signal recovery is 
based on whole blocks, rather than 
recovery of each coefficient. The 
windowing functions used to determine the bins are leakage-free constructions (e.g. a Gaussian convolved with a box-car filter; 
Figure 2).

                         How the sFFT might help gravitational wave data analysis
Continuous wave (CW) GW data analysis looks for quasi-monochromatic signals (spectral lines) potentially given off by certain 
rotating neutron stars. However CW searches are often so computationally intensive that computing resources comprise a serious 
constraint on targets to search for. These CW searches are based on spectral methods that heavily rely on the FFT, so an 
improvement in run-time would allow more candidates to be targeted. 

A simplified example of such a search might be a neutron star with known position but unknown CW frequency in a 200 Hz 
search band; if the data is efficiently heterodyned, the effective Nyquist sampling rate is 400 Hz. In this band, we expect at most a 
single spectral line from the CW source, and perhaps ten spectral lines as may be found in LIGO or Virgo GW laser interferometer 
data, so we can expect the sparsity to be at most S = 20. Finally, LIGO and Virgo CW data is often analysed in 30 minute (1,800 sec) 
chunks to optimise noise stationarity. Hence, in this case, analysis would require FFT sizes of N = 1,800 * 400 = 720,000 points. 

                                                                           Performance
Sparse FFT simulations were applied to vectors having 20 spectral lines (i.e. S = 20) of random frequencies and amplitudes, 
using a publicly available sFFT implementation [2]. The run-time performance of signal reconstruction was compared to a FFTW3 
implementation for a range of FFT sizes (Figure 3). 

For the example given above, a conservative comparison would be for N = 2¹⁹ ~ 500,000 points. In this case, the run-time for 
the FFTW3 implementation was 40.2 ms per FFT, while that for the sFFT was 14.8 ms. 

In other words, the sFFT showed a speed-up of 250% over FFTW3! For N = 10⁶ ~ 2²⁰, this speed-up increases to over 450%!

These bounds are conservative estimates; many searches cover higher bandwidths (requiring higher N) while the performance of the 
sFFT is likely to improve in the near future, making use of processor look-up tables, similar to how the FFTW3 obtains high perfomance.

Sparse Methods for Gravitational Wave Detection

y = Θ x

Θ = Φψs

Measurement vector
          (1 X M)

Original signal
       (1 X N)

Sensing matrix
      (M X N) Sparse basis  

    (N X N)

Sparse vector  
    (1 X N)

To solve for s, impose sparsity:

||s|| 0
min s.t. ||y - Θ x||  = 02

...but this is a combinatorial problem!
(Need to guess up to   C   coefficients)N

M

||s|| 1
min s.t. ||y - Θ x||  = 02

Instead, almost as good (esp. for large N):

||s|| 1
min s.t. ||y - Θ x||   ≥ 𝜖2

In the case of noise, set a residual threshold:

Compressive sampling (CS; also referred to as ‘compressed sensing’) is a powerful mathematical framework that guarantees the 
reconstruction of signals that would normally be impossible because of the Shannon-Nyquist sampling theorem: in order to 
sufficiently sample a signal to reconstruct it without aliasing, you are required to sample at a rate that is at least twice the signal 
bandwidth [e.g. 3].

Consider a length N signal vector x (i.e. x ∈ ℝ� ) that is sparse in some basis ψ , so that x = ψs where s is an S-sparse vector. Now 
consider a linear measurement system (Equation 1), with a length M output vector y (i.e. y ∈ ℝ�), characterised by a sensing matrix φ , 
so that y = ϕx = ϕψs . In this framework, the Shannon-Nyquist sampling theorem is just an expression of a ‘well-known’ property of 
linear systems: to solve an equation of N unknowns, you require at least N equations. Hence for the system we consider here, M ≥ N. 
However, Figure 1 (the twelve ball problem) has hopefully convinced you that this is not necessarily the case, and you can still 
reconstuct signals accurately for M � N if you know the underlying signal to be sparse.This is the essence of compressive sampling; 
a more formal description is in [3] and Equations 1 and 2.

[1] H. Hassanieh, P. Indyk, D. Katabi and E. Price: “Nearly Optimal Sparse Fourier Transform,” arXiv 1201.2501v1 (2012)
[2] sFFT code available from http://groups.csail.mit.edu/netmit/sFFT/code.html
[3] E. Candès, J. Romberg and T. Tao: “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Information Theory 52(2):489–509 (2006)
[4] J. Högbom: "Aperture Synthesis with a Non-Regular Distribution of Interferometer Baselines," Astron. & Ap. Suppl. 15, p.417 (1974)
[5] J. Abadie et al.: “Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts,” A&A 539:A124 (2012)
[6] É. Chassande-Mottin et al.: “Detection of GW bursts with chirplet-like template families,” CQG 27:194017 (2010)
[7] L. Applebaum et al.: “Chirp sensing codes: Deterministic compressed sensing measurements for fast recovery,” Applied Comp. Harm. Analysis 26(2):283–290 (2009)

Contact
For more information, please 

email: 
Ra.Inta@anu.edu.au
or scan this QR code:

                                                                Issues and future work
Although there have been apparently promising studies on the performance of  the sFFT with noise [1], the comparison was with 
another sparse FFT algorithm. Hence detailed studies of how robust the sFFT performs on noisy data compared to existing FFT 
implementations will have to be performed.

Also, the assumption of sparsity of spectral lines from CW sources in GW data sets is valid only for Gaussian noise; in real detectors 
the noise curve are heavily frequency dependent. In order for this implementation to be useful for CW searches, a frequency localisation 
(band-passing) or other compromising scheme may have to be adopted.

What this poster is about
There is a growing interest in the potential 
of sparse methods. While this work is in a 
preliminary stage, this poster is an attempt 
to illustrate two, amongst potentially 
many, possible applications of sparse 
methods in the analysis of GW data. 
Some of the pitfalls and potential issues 
are also discussed.

               How OMP might help gravitational wave data 
                analysis

One of the most promising GW sources detectable by ground based 
detectors are Compact Binary Coalescence (CBC) events. In the 
stationary phase approximation, they may be seen to ‘chirp,’ i.e. modulate 
in frequency, over a short period of time. A rapid detection algorithm, known as Omega, uses a sine-Gaussian wavelet based analysis of 
the time-frequency plane to identify chirp-like signals.  However the Omega pipeline has a limited localisation of signals in the 
time-frequency plane which can contribute to large position reconstruction errors. This can be problematic in a multi-messenger 
astronomy context [5]. Hence it would be desirable to localise the signal further in the time-frequency plane.
 
A proposed solution to give a similarly rapid, but more localised, signal reconstruction in the time-frequency plane is known as
Chirpletised Omega [6]. This adds a slope parameter, d, in the time-frequency plane to the Omega (sine-Gaussian) wave-form 
(Equation 3). For a CBC event with total mass < 20 M⊙, Chirpletised Omega templates cover ten times more parameter space than 
Omega, resulting in better signal localisation, and giving a corresponding SNR enhancement of ~40%. If we ignored constraints with 
aliasing, template coverage would be ten times higher again. For ~100 M⊙, aliasing restricts the number of templates to one hundredth 
the theoretical limit.

                             Reconstruction schemes: Orthogonal Matching Pursuit (OMP)
One of the most important aspects of compressive sampling is the choice 
of optimisation method to reconstruct the underlying signal from the 
measurements. Here we choose to illustrate this problem using Orthogonal 
Matching Pursuit (OMP; Figure 4). Based on a recursive greedy 
algorithm, this is one of the most robust and accurate CS reconstruction 
methods. In addition, it is straight-forward to implement a noise based 
stopping criterion by parameterising the magnitude of the residual noise, 
𝜖, giving the possibility of tuning the algorithm for a given noise level. 
For example, given Gaussian noise, a chi-squared statistic may be 
constructed so that p(χ² � 𝜖²) = α, for a confidence level α.

Put simply OMP automatically constructs a basis of dimensionality (of 
order S) of the underlying vector by taking the S most significant 
coefficients. In practise it is very similar to the CLEAN algorithm used in 
radio astronomy [4] and shares elements of Principal Component Analysis.

Equation 1: A linear measurement system. Here an underlying signal x is transformed by a 
linear measurement system to give a set of measurements y. In a GW context,                            
i.e. Doppler shift parameters, antenna functions, whitening matrices and any other linear 
transform necessary to render the data ‘useable’.  

Equation 2: Compressive 
sampling. If we know a 
signal is sparse, we can 
impose this constraint in an 
optimisation framework. 
Formally, this involves 
minimising the ℓ₀-‘norm’ of 
the sparse vector s. 
However, this is an NP-hard
problem. It has been shown
that this condition is 
effectively guaranteed for 
most signals by minimising 
the ℓ₁-norm [3].

Equation 3: Chirpletised Omega. Omega wave-forms are based on sine-Gaussians, i.e. a sinusoid of frequency f is localised in time by a Gaussian with a quality 
factor Q. These wave-forms are rapid to calculate and reasonably capture a signal in the time-frequency. Chirpletised Omega extends this concept by introducing a 
chirp parameter, d, giving a slope to the wave-form.
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Original sparse signal (S=10, N=1,024)

Reconstructed signal (M=100, ε = 0.1)

Figure 5: OMP undersampling performance.  Here OMP is 
shown to accurately reconstruct a sampe of ten spectral lines of 
random amplitudes at one tenth the Nyquist frequency.

                                                                              Issues and future work
Because orthogonal matching pursuit projects the most significant elements of a set into a new basis set of reduced dimension (of 
order S), contamination with noise can present a significant problem. The choice of residual noise parameter, ε , can be important in 
reducing the level of contamination. However, this choice of a noise-based stopping criterion means that the run-time of the OMP 
algorithm is exceedingly poor (O(N3)). Non-CPU based hardware accelerators such as FPGAs have been shown to have a 3,000 times 
speed-up for OMP reconstruction. Finally, a CS technique with much promise in this direction, having a more reasonable computational 
complexity of O(S N log(N)), and being deterministic, are CS-based ‘chirp sensing codes’ [7].

Conclusion
Many common signals found in nature are sparse (or at least compressible) in a particular representation. Likely candidate sources of gravitational waves are no exception, and associated data analysis techniques are effectively sparse in a number of representations. 
There are many ways this sparse information may be exploited. As examples, a recent sparse FFT implementation has been shown to have a superior run-time to that of FFTW3, possibly alleviating computational bounds in CW searches. A compressive sampling algorithm, 
such as orthogonal matching pursuit, may improve localisation of chirped burst signals in the time-frequency plane. Although powerful, sparse methods should be applied with caution. Perhaps the most serious issue relates to how gracefully these methods perform with noisy signals; 
a completely noisy signal is obviously not sparse.

                                       Performance
A set of ten spectral lines (S=10) were selected with random frequencies and 
amplitudes within a N=1024 vector. The number of samples selected from 
a random measurement system was M=100, i.e. roughly one tenth the 
Shannon-Nyquist limit. The stopping criterion for a one-dimensional 
OMP implementation was based on a residual noise level 𝜖 � 0.1. 
Figure 5 shows the result of an arbitrarily chosen reconstruction; the 
reconstruction agrees well with the original signal. In this example the 
choice of 𝜖 is arbitrary, and only affects the run-time. However, in a similar 
experiment with much lower signal to noise, the reconstruction begins to 
fail such that the reconstruction forms additional points around the 
threshold level.
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