
Heterogeneous Hardware Acceleration of Parallel Algorithms

Department of Quantum Science,
The Australian National University,

Canberra ACT 0200, Australia

Ra Inta, David J. Bowman and Susan M. Scott

GC P

000: Introduction

Performance trend of global top 500 supercomputing systems

SKA

Year

P
e

rf
o

rm
a

n
c

e

Figure 1: Current and projected performance of the top five hundred supercomputing systems. The computational demands of the SKA
(Square Kilometre Array) alone will require the projected most powerful computing system (i.e. exaflop/s scale) by 2020.

We are experiencing an ever-increasing deluge of data from large scientific projects, requiring commensurately significant computational power.
As a result, we are currently in a transition period for high performance computing (HPC) architectures, and the timing is right to explore alternative computing architectures.
For example, the Square Kilometre Array alone [1] is expected to require the top projected supercomputing system [2] for its expected first-light date of 2020
(Figure 1). However, there are many other data-hungry systems about to come on-line, such as the Large Synoptic Survey Telescope [3].

001: Advantages of Hardware
Acceleration

Platform Pros Cons
CPU Analysis ‘workhorse,’ multi-tasking Power hungry, limited processing cores
(GP)GPU Highly parallel, fairly simple interface (e.g. C for CUDA) Highly rigid instruction set (don’t handle complex

pipelines)
FPGA Unrivalled flexibility and pipelining Expensive outlay, specialised programming interface,

prohibitive development time

Table 1: Comparison of the advantages and disadvantages of CPU based calculations to those of the GPU and FPGA. This list is neither comprehensive nor exhaustive.

FPGA
CPU GPU

Field Programmable Gate ArrayCentral Processing Unit Graphical Processing Unit

In light of the above pressures, many researchers have turned to hardware acceleration as a solution. The type of accelerator depends on the algorithm/pipeline in question (Table 1).

By far the most widely adopted hardware acceleration platforms are the (General Purpose) Graphical Processor Unit (GPU) and the Field Programmable Gate Array (FPGA).
The former emerged from the demands of computer gamers for ever-better graphical displays, while the latter derives from pressures from manufacturers demanding platforms more flexible
than application-specific integrated circuits.

010: The ‘Chimera’ Computing System

GPU cluster

High-speed BackplaneCPU

GPU

FPGA FPGA FPGA

FPGA FPGA FPGA

GPU GPU

>> help xcorr_fpga
 FPGA based xcorr

>> x=0:100;
>> y=xcorr_fpga(x);
>> z=fft_gpu(x);
>> why

FPGA cluster
CPU and Input/Output
(with Matlab Interface)

Figure 2: Schematic of our CPU/GPU/FPGA based computing platform at the Australian National
University. Because of commercial-off-the-shelf constraints, the ‘high-speed backplane’ described
here is the PCI Express bus resident on a standard computer motherboard.

Figure 3: Photograph of an implementation of the system.
Because of the three hardware classes, we named the system the
‘Chimera,’ after the mythical Greek beast with three different heads.

Image kindly produced by Elizabeth Koehn

At the Australian National University, we constructed a computing system to exploit the advantages of both
FPGAs and GPUs for certain algorithm classes [4, 5]. The initial concept was to mediate separate clusters of
FPGAs and GPUs via a high-speed backplane. One of the design constraints is for the components to be
commercial-off-the-shelf. This meant the backplane adopted is the PCI Express bus, resident on a standard
CPU motherboard.

For many algorithm classes, the bottleneck in throughput is in transporting data (I/O). Here, communication
between the hardware is facilitated by Linux kernel modules, with the intention of minimising the mediation
role played by the CPU.

110: References
[1] T. Cornwell and B. Humphreys, “Data processing for ASKAP and SKA,”
 http://www.atnf.csiro.au/people/tim.cornwell/presentations/nzpathwaysfeb2010.pdf (2010)

[2] H.Meuer, E. Strohmaier, J. Dongarra, and H. Simon, “Top 500 supercomputers,” http://www.top500.org/ (June 2012)

[3] LSST Corporation, “Large synoptic survey telescope,” http://www.lsst.org/lsst/ (Sept. 2012)

[4] R. Inta and D. J. Bowman, “An FPGA/GPU/CPU hybrid platform for solving hard computational problems,”
 in Proc. eResearch Australasia, Gold Coast, Australia (Nov. 2010)

[5] R. Inta, D. J. Bowman, and S. M. Scott, “The ‘Chimera’: An Off-The-Shelf CPU/GPGPU/FPGA Hybrid Computing
 Platform,” Int. J. Reconfigurable Comp., 2012(241439), 10 pp. (2012)

[6] P. Colella, “Defining Software Requirements for Scientific Computing,” DARPA HPCS (2004)

[7] K. Asanovic and U C Berkeley Computer Science Department, “The landscape of parallel computing research:
 a view from Berkeley,” Tech. Rep. UCB/EECS-2006-183, UC Berkeley (2005)

111: Contact
Ra Inta: ra.inta@anu.edu.au

More information:
www.anu.edu.au/physics/cgp/Research/chimera.html

100: Analysis of Parallel Architectures
via the ‘Thirteen Dwarves of Berkeley’

1*
1^2*

2^

3
4 5

6

7

8

910
1112

13

CPU

FPGA GPU
Figure 5: The most appropriate hardware acceleration subsystem combination for representative
problems from the “Thirteen Dwarves” (Table 2). The * refers to fixed point, while ^ represents
floating point calculations.

 Dwarf Examples/Applications
1 Dense Matrix Linear algebra (dense matrices)
2 Sparse Matrix Linear algebra (sparse matrices)
3 Spectral FFT-based methods
4 N-Body Particle-particle interactions
5 Structured Grid Fluid dynamics, meteorology
6 Unstructured Grid Adaptive mesh FEM
7 MapReduce Monte Carlo integration
8 Combinational Logic Logic gates (e.g. Toffoli gates)
9 Graph traversal Searching, selection

10 Dynamic Programming ‘Tower of Hanoi’ problem
11 Backtrack/Branch-and-Bound Global optimization
12 Graphical Models Probabilistic networks
13 Finite State Machine TTL counter

Table 2: The “Thirteen Dwarves of Berkeley”. This is a list of the main classes or
processes spanning the present and projected parallel algorithm landscape. A
representative problem from each class is also given.

It is interesting to consider the possibility that the entire landscape of parallel algorithms and pipelines may be represented by a handful of algorithm classes. Initially, Phillip Colella
identified seven broad classes [6], which were quickly termed ‘dwarves,’ after the Snow White fairy tale. This concept of a dwarf, as an “algorithmic method encapsulating a pattern
of computation and/or communication,” was developed further by the Computer Science Department of UC Berkeley and extended to thirteen [7]. These dwarves, along with representative
problems or algorithms, are listed in Table 2.

We analysed the current implementation of the Chimera computing system, in terms of
expected performance, on the Thirteen Dwarves (Figure 5). This is not intended to be
comprehensive, as I/O constraints, choice of fixed/floating point support etc. are highly
implementation dependent. However, as far as we are aware, we are the first group to
have performed such an analysis.

101: Conclusion

Because of the ever-increasing demand for high performance computing, we are in a period of phase transition towards new parallel computing architectures. A promising avenue is the
exploitation of hardware accelerators, the most common being the GPU and the FPGA, for different reasons. Because the technology is still new for both these accelerators, they have
performance growth easily exceeding that of Gordon Moore’s famous law.

We have shown here that it is possible to exploit the advantages of heterogeneous hardware accelerators for certain algorithms [4], demonstrating this on a proof-of-concept platform
using commercial-off-the-shelf components [5], a platform we call the ‘Chimera’.

Finally, we have attempted to estimate the performance of the sub-system components of the Chimera system on all possible instances of parallel computational algorithms, via the
“Thirteen Dwarves of Berkeley” [7].

This system is scalable and extremely energy-efficient, if optimised for the algorithm or pipeline. The initial capital outlay for the components is extremely competitive. However,
largely because of the FPGAs, development time can be costly.

011: Performance

B
Normalised

cross-correlation

ΣΣ 𝐴[𝑥, 𝑦] ∙ 𝐵[𝑥 + 𝑋, 𝑦 + 𝑌]
𝐴2𝐵[𝑋, 𝑌]2𝑌𝑋

FPGA

GPU

GPU

??
??

A
Monte Carlo
calculation

of π

FPGA

FPGA

GPU

CPU

GPU

Excellent at
generating
random numbers

Excellent at
dense linear
algebra

1: Create NT uniformly
distributed random
positions within
unit square.

2: Count number of
points N

C
 satisfying

x2 + y2 < 1

3: Calculate 4N
C
 /N

T

and display

Performance on this type of heterogeneous platform is highly algorithm dependent. One of the simplest algorithms that illustrates the concept of this platform is the pedagogical
introduction to Monte Carlo integration (Figure 4A).

Figure 4A: Monte Carlo calculation of π. Pairs (x, y) of
uniformly distributed random numbers are generated
to lie within a square, circumscribed about a unit circle.
In the limit of large numbers of pairs, the ratio of the
points that lie within the circle to the total number
converges to π/4.

Using 32-bit integer pairs, we tested the whole pipeline
in the FPGAs, which gave the fastest throughput of
24 Gsamp/s, compared to the GPU, at 2.1 Gsamp/s .
This compares to the roughly 10 Msamp/s for our CPU.
This result is surprising, although considerable effort
went into optimising the FPGA pipeline. We expect the
GPU to fare a lot better with more complex integration
problems.

Figure 4B: Normalised cross-correlation in two dimensions.
This is widely used e.g. for image processing, resolving images in
synthetic aperture arrays such as the SKA or the VLBA, and in
video compression. The numerator, being multiply-intensive, is
well suited to GPU-based computation. It is not entirely clear
what hardware is most suitable to calculate the denominator.

We exhaustively searched a 1024×768 pixel (16-bit greyscale)
image for a 8×8 template. The numerator was calculated on the
GPU at 158 frame/s. The denominator was tested separately on
the GPU and the FPGA, giving 894 frame/s for the former and
12,500 frame/s for the latter.

Thus, in this implementation, ignoring the impact of the PCIe
bottleneck, a hybrid system comprising a GPU working in
tandem with an FPGA was found to achieve a better result than
a system consisting of two GPUs.

Figure 4C: Other algorithms.
Many promising data analysis applications
that are considered computationally
expensive may be implemented rather
simply using this type of heterogeneous
hardware acceleration. For example, digital
filter application is efficiently implemented
on FPGA devices. A number of promising
analysis techniques based on compressed
sensing are considered computationally
expensive that may be efficiently
implemented on an FPGA via
Cholesky decomposition.

Finally, another promising pipeline capability
of this system exists where instruments
acquire and filter data using an FPGA, but
require the more rapid development and
floating point capability of a GPU based
platform.

C
Other algorithms

FPGA

GPU

GPU

FPGA

