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000: Introduction

Performance trend of  global top 500 supercomputing systems
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Figure 1: Current and projected performance of the top five hundred supercomputing systems. The computational demands of the SKA
(Square Kilometre Array) alone will require the projected most powerful computing system (i.e. exaflop/s scale) by 2020.

We are experiencing an ever-increasing deluge of data from large scientific projects, requiring commensurately significant computational power. 
As a result, we are currently in a transition period for high performance computing (HPC) architectures, and the timing is right to explore alternative computing architectures. 
For example, the Square Kilometre Array alone [1] is expected to require the top projected supercomputing system [2] for its expected first-light date of 2020 
(Figure 1). However, there are many other data-hungry systems about to come on-line, such as the Large Synoptic Survey Telescope [3].

001: Advantages of Hardware 
Acceleration

Platform Pros Cons 
CPU Analysis ‘workhorse,’ multi-tasking Power hungry, limited processing cores 
(GP)GPU Highly parallel, fairly simple interface (e.g. C for CUDA) Highly rigid instruction set (don’t handle complex 

pipelines) 
FPGA Unrivalled flexibility and pipelining Expensive outlay, specialised programming interface, 

prohibitive development time 
 

Table 1:  Comparison of the advantages and disadvantages of CPU based calculations to those of the GPU and FPGA. This list is neither comprehensive nor exhaustive. 

FPGA
CPU GPU

Field Programmable Gate ArrayCentral Processing Unit Graphical Processing Unit

In light of the above pressures, many researchers have turned to hardware acceleration as a solution. The type of accelerator depends on the algorithm/pipeline in question (Table 1).

By far the most widely adopted hardware acceleration platforms are the (General Purpose) Graphical Processor Unit (GPU) and the Field Programmable Gate Array (FPGA). 
The former emerged from the demands of computer gamers for ever-better graphical displays, while the latter derives from pressures from manufacturers demanding platforms more flexible 
than application-specific integrated circuits.

010: The ‘Chimera’ Computing System
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Figure 2:  Schematic of our CPU/GPU/FPGA based computing platform at the Australian National 
University.  Because of commercial-off-the-shelf constraints, the ‘high-speed backplane’ described 
here is the PCI Express bus resident on a standard computer motherboard.

Figure 3: Photograph of an implementation of the system. 
Because of the three hardware classes, we named the system the 
‘Chimera,’ after the mythical Greek beast with three different heads.

Image kindly produced by Elizabeth Koehn

At the Australian National University, we constructed a computing system to exploit the advantages of both 
FPGAs and GPUs for certain algorithm classes [4, 5]. The initial concept was to mediate separate clusters of 
FPGAs and GPUs via a high-speed backplane. One of the design constraints is for the components to be 
commercial-off-the-shelf. This meant the backplane adopted is the PCI Express bus, resident on a standard 
CPU motherboard.

For many algorithm classes, the bottleneck in throughput is in transporting data (I/O). Here, communication 
between the hardware is facilitated by Linux kernel modules, with the intention of minimising the mediation 
role played by the CPU.
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100: Analysis of Parallel Architectures 
via the ‘Thirteen Dwarves of Berkeley’
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Figure 5: The most appropriate hardware acceleration subsystem combination for representative 
problems from the “Thirteen Dwarves” (Table 2). The * refers to fixed point, while ^ represents 
floating point calculations.

 Dwarf Examples/Applications 
1  Dense Matrix        Linear algebra (dense matrices)  
2  Sparse Matrix       Linear algebra (sparse matrices)  
3  Spectral        FFT-based methods 
4  N-Body          Particle-particle interactions 
5  Structured Grid     Fluid dynamics, meteorology  
6  Unstructured Grid       Adaptive mesh FEM  
7  MapReduce           Monte Carlo integration  
8  Combinational Logic     Logic gates (e.g. Toffoli gates)  
9  Graph traversal     Searching, selection  

10  Dynamic Programming    ‘Tower of Hanoi’ problem  
11  Backtrack/Branch-and-Bound      Global optimization  
12  Graphical Models       Probabilistic networks  
13  Finite State Machine   TTL counter  

 
Table 2: The “Thirteen Dwarves of Berkeley”.  This is a list of the main classes or 
processes spanning the present and projected parallel algorithm landscape. A
representative problem from each class is also given.

It is interesting to consider the possibility that the entire landscape of parallel algorithms and pipelines may be represented by a handful of algorithm classes. Initially, Phillip Colella 
identified seven broad classes [6], which were quickly termed ‘dwarves,’ after the Snow White fairy tale. This concept of a dwarf, as an “algorithmic method encapsulating a pattern 
of computation and/or communication,” was developed further by the Computer Science Department of UC Berkeley and extended to thirteen [7]. These dwarves, along with representative 
problems or algorithms, are listed in Table 2.

We analysed the current implementation of the Chimera computing system, in terms of 
expected performance, on the Thirteen Dwarves (Figure 5). This is not intended to be 
comprehensive, as I/O constraints, choice of fixed/floating point support etc. are highly 
implementation dependent. However, as far as we are aware, we are the first group to 
have performed such an analysis.

101: Conclusion

Because of the ever-increasing demand for high performance computing, we are in a period of phase transition towards new parallel computing architectures. A promising avenue is the 
exploitation of hardware accelerators, the most common being the GPU and the FPGA, for different reasons. Because the technology is still new for both these accelerators, they have 
performance growth easily exceeding that of Gordon Moore’s famous law.

We have shown here that it is possible to exploit the advantages of heterogeneous hardware accelerators for certain algorithms [4], demonstrating this on a proof-of-concept platform 
using commercial-off-the-shelf components [5], a platform we call the ‘Chimera’. 

Finally, we have attempted to estimate the performance of the sub-system components of  the Chimera system on all possible instances of parallel computational algorithms, via the 
“Thirteen Dwarves of Berkeley” [7].

This system is scalable and extremely energy-efficient, if optimised for the algorithm or pipeline. The initial capital outlay for the components is extremely competitive. However, 
largely because of the FPGAs, development time can be costly. 
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Performance on this type of heterogeneous platform is highly algorithm dependent. One of the simplest algorithms that illustrates the concept of this platform is the pedagogical 
introduction to Monte Carlo integration (Figure 4A). 

Figure 4A: Monte Carlo calculation of π.  Pairs (x, y) of 
uniformly distributed random numbers are generated 
to lie within a square, circumscribed about a unit circle. 
In the limit of large numbers of pairs, the ratio of the 
points that lie within the circle to the total number 
converges to π/4.
 
Using 32-bit integer pairs, we tested the whole pipeline 
in the FPGAs, which gave the fastest throughput of 
24 Gsamp/s, compared to the GPU, at 2.1 Gsamp/s . 
This compares to the roughly 10 Msamp/s for our CPU. 
This result is surprising, although considerable effort 
went into optimising the FPGA pipeline. We expect the 
GPU to fare a lot better with more complex integration 
problems.

Figure 4B: Normalised cross-correlation in two dimensions. 
This is widely used e.g. for image processing, resolving images in 
synthetic aperture arrays such as the SKA or the VLBA, and in 
video compression.  The numerator, being multiply-intensive, is 
well suited to GPU-based computation. It is not entirely clear 
what hardware is most suitable to calculate the denominator.

We exhaustively searched a 1024×768 pixel (16-bit greyscale) 
image for a 8×8 template. The numerator was calculated on the 
GPU at 158 frame/s. The denominator was tested separately on 
the GPU and the FPGA, giving 894 frame/s for the former and 
12,500 frame/s for the latter. 

Thus, in this implementation, ignoring the impact of the PCIe 
bottleneck, a hybrid system comprising a GPU working in 
tandem with an FPGA was found to achieve a better result than 
a system consisting of two GPUs.

Figure 4C: Other algorithms. 
Many promising data analysis applications 
that are considered computationally 
expensive may be implemented rather 
simply using this type of heterogeneous 
hardware acceleration. For example, digital 
filter application is efficiently implemented 
on FPGA devices. A number of promising 
analysis techniques based on compressed 
sensing are considered computationally 
expensive that may be efficiently 
implemented on an FPGA via 
Cholesky decomposition. 

Finally, another promising pipeline capability
of this system exists where instruments 
acquire and filter data using an FPGA, but 
require the more rapid development and 
floating point capability of a GPU based 
platform.

C 
Other algorithms

FPGA

GPU

GPU

FPGA


