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Sparse methods

Reminder: a vector is S-sparse

(compressible) if it has at most S SY PH I LIS

non-zero (non-negligible)
coefficients (e.g. Yves’ and
Gabriel’s talks)

* Syphilis in WWII
Image/file compression
* Twelve Ball Problem

“ALL OF THESE MEN HAVE IT

WOMEN: STAY AWAY FROM DANCE HALLS




You're given 12 identical balls, except
exactly one is heavier/lighter than
the others.

Q,

Using only a simple scale balance,
what is the minimum number

of measurements required to
determine the odd ball?




Brief re-cap on compressive sampling

* Unified framework for
encoding/reconstruction of sparse signals

* Applications from radar, Herschel space
observatory, to a single pixel camera

Image: M. F. Duarte et al., Rice University

E. Candeés, J. Romberg and T. Tao: IEEE Trans. on Information Theory 52(2):489-509 (2006)



Compressive sampling (CS) framework

K*.y=®x~/w

Measurement vector Original signal
(1 XM) (1 XN)

@ — (I) \ll\_ Sparse basis

A\ (N X N)

Sensing matrix
(M XN)

Determined system: M =N
CS (‘'under-determined’): M << N



To solve for x, impose sparsity:

ina [[x]l, st ly - © x]|,= 0

...but this 1s a combinatorial problem!
(Need to guess up to NCM coefficients)

Instead, almost as good (esp. for large N):

wa [[x]], st [ly-© x|, =0



Compressible/noisy signals

Find: ||x]||; s.t. |ly —0x]||, <€



Linear Program

e Optimisation reconstruction methods

e E.g. Simplex method (linear constraints give
convex polytope)

Travel along vertices
to global optimum

Optimal point

Starting point




Orthogonal Matching Pursuit (OMP)

A recursive greedy algorithm

1. Initialise vectors and determine stopping
criterion

—>2. Get signal estimate by taking most significant
column from residual vector

3. Update residual basis

14, Update residual vector

e Similar to CLEAN algorithm used in radio astronomy
e ‘Easy’ to implement noise-based criteria



CS results

Can determine minimum number of samples
required for perfect reconstruction:

M > C S u® log(N)

Where Cis small (~0.5) , and the mutual coherence:

T \/Nl.n}g;5|<<0i,l/)j>l

Measures how ‘spread out’ the signal is in the sampling domain



Mutual coherence

Guarantees sampled low dimensional subspace
sufficiently covers sparse basis (Restricted Isometry)

e.g. Delta functions in Fourier domain are minimally
coherent with time domain:

,u=\/ﬁmlng(5(f— fi)e?™ gt = \/N\/LN= 1

E. Candes and J. Romberg, Inverse Problems 23:969-985 (2007)



CS applications

Basic ingredients:
1. Sparse/compressible representation

2. Low mutual coherence between sensing and
sparsity bases




The Sparse Fast Fourier Transform

* Implements non-recursive OMP

 Computational complexity for known sparsity
S: O(S log(N))

Compare to FFT [O(N log(N))]:
Speed-up is O(N/S), so e.g., for N=10°, S=100 :

Here sFFT is (theoretically) 10,000 times as fast as FFT!

Hassanieh, H., Indyk, P., Katabi, D., and Price, E.: “Nearly Optimal Sparse Fourier
Transform,” arXiv 1201.2501v1 (12 Jan 2012)



How the sFFT works

FFT: output proportional to N
sFFT: output proportional to S

Code available from http://groups.csail.mit.edu/netmit/sFFT/code.html



* Very wide---and tuned---bin size ( B~ v/ (NS)
initially, decreasing as coefficients identified)

* Leakage-free bin filters

* Use block recovery (i.e. not individual
coefficients)

* |teratively remove identified coefficients from
bins, not the signal

G = (Gaussian) * (Box-car)



Gravitational Waves

Einstein, A. and
Rosen, N.:"On
Gravitational
Waves," Journal
of the Franklin
Institute 223,
pp.43-54 (1937)

(Or search for:
“‘who’s afraid of the
referee?”)




Linearised general relativity

Take small perturbations, h, of the space-time metric:

gﬂv — n.u'v + h%V

Put into the Einstein Field Equations:

v _ 8mG v
Gli 7 Tli

To finally get the wave-equation (transverse-traceless gauge):

oh®v = 161G THY



Observations: Hulse and Taylor
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LASER interferometers

Michelson type: sensitive, broad-band
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The LIGO Network

R 31,2007

Hanford, WA Livingston, LA

4 km baseline, seismic isolation
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The LIGO-Virgo Network
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Gravitational wave applications

Can analyse GW data within a CS framework:
Od=DXAXW X :-- (time domain)

(Doppler shift parameters, antenna pattern modulation, whitening,
data quality flags ... any other linear transform necessary so data is
‘useable’)

Y = Phenomenon (GW) Signal type Sparse basis/frame

Rotating non-axisymmetric Periodic Fourier domain

neutron stars

Binary compact object Chirp/Gabor Chirplet
coalescense

Supernovae, other transients Impulse Time domain
Stochastic GW background Correlation Correlation space



Case 1: Continuous GWs

* Rotating, non-axisymmetric neutron stars
* Signhal model relatively well understood

* Low h,, so average over long time

Not to scale!






Cassiopeia A

. Y LT e
*Young (~300 yr) compact object

*Position is well known
*Unknown frequency and spin-down
| parameters

Wette, K. et al.: "Searching for gravitational waves from Cassiopeia A with LIGO,"
Class. Quantum Grav., 25(235011):1-8 (2008)




The problem: many searches are
computationally bound

e.g. Cas A search took 420,000 CPU hrs on Albert Einstein
Institute’s 32 Tflop Atlas™® supercomputer (5,000 CPUs)

*Data from 2008, when search was performed



An improvement: resampling

Heterodyne data and downsample so the Nyquist
frequency is a function of the search bandwidth

—> Significant speed-up: Cas A would take less than 1/10 the original
cost.

P. Patel et al., Phys. Rev. D 81:084032:1-10 (2010)



Total run-time (sec)

Improvements from sFFT

FFT length (N)



Total run-time (sec)

Improvements from sFFT

FFT length (N)




Performance

~or a single 30 minute data stretch, searching
netween 100-300 Hz, gives N=720,000 (> 2”719)

Randomised trails, for S=20, give run-times:
SFFT: 14.8 ms

FFTW3: 40.2 ms

- Speed-up of over 250% !!!

For N~10°, this becomes > 467%



Will potentially make many (~ 1 dozen) currently

borderline targets feasible; many more for
aLIGO

E.g.
* 350.1-0.3
DA 495 (G65.7+1.2)

 Some estimates for Vela Jr. (G266.2-1.2)



Case 2: GW burst sources

Transient, high amplitude events:
 Compact binary coalescense events

e Galactic core collapse supernovae

Highly energetic: produce range of emission
species (EM, neutrino, p*, p;, e, e*, GW
radiation...)



Multi-messenger astronomy

N Electromagnetic radiation
At ~ to + few days

Meutrino flash shell
At ~to+ 5 ms

Gravitational waves
\ ,in.t to

/’

Galactic type Il (core-collapse) super nova




EM Follow-up Programme

Locating and Observing Optical Counterparts to Unmodelled Pulses

*Independent (EM) confirmation of GW burst events

*Triggered alerts from IFOs sent to telescopes with wide optical fields
*ANU’s SkyMapper telescope part of the network

*Image analysis problem

SkyMapper




Burst detection pipelines

 Omega, continuous wave-burst

* Look for excess energy in Gabor (time-
frequency) plane

* Omega: Sine-Gaussian wavelets

—(27T2f)2 (T — t)2 ) exp(2mi|f(t —t)])

Y(t) =4 exp( .

872 /4
1= (%)
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The problem: poor position reconstruction
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An improvement: chirplets

* Chirplet approach: add chirp rate parameter d

P(r) =4 exp( (an) (t — t)z) exp (ZTL’i [f(r —t) + g(r — t)ZD

* Covers 10 times more parameter space than
Omega

 SNR enhancement of 45% (range increase of
~40%)
* High SNR signal is sparse in the Chirplet domain

E Chassande-Mottin et al., CQG 27:194017 (2010)



Nyquist limitations

* Nyquist limit in time-frequency plane (aliasing
of chirplet templates), so reduced timing
precision

* Nyquist limit: equivalent to saying that for a
linear system with N unknown coefficients,
require N equations to determine system.



The solution: compressive sampling in
time-frequency plane

Patrick Flandrin and Pierre Borgnat: “Time-frequency energy distributions meet
compressed sensing,” IEEE Transactions on Signal Processing, 58(6):2974-2982 (2010)



Arnplitude (arbitrary)
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Results on spectral lines

OMP reconstruction of neutron star GWW signals
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Under-sampling ratio: N/M ~ 10 times



Noise

E.g. applied to CW detection statistic (the Jf-statistic). Assuming
Gaussian noise, Chi-squared with 4 d.f.

y=¢x+tn x? ~ x4(A)

-

R“N|a~l\>

Xi(x; ¢,¥) =z4:

noting that p(x2 < 9.49) = 0.95, can get 95% C.I. from €2 = 9.49



Amplitude (arbitrary)

OMP reconstruction of noisy sparse signal (M/N = 0.085, £ = 3.0808)
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Issues

* Pure delta functions in time give maximum ...
Can’t use CS

* LIGO/Virgo GW detectors most sensitive
~0(100) Hz---confined to compact region of
Gabor plane

* Increased SNR---improve localisation of
transient events in Gabor plane



Future work

e Faster OMP implementation: Field-
Programmable Gate Arrays, ~3,000 times
speed-up over conventional processors*®

 Other GW data analysis applications

e CS applications in experimental GW detection
methods (e.g. spectral line hunting)

* Noise studies

*R. Inta etal., Int. J. of Reconfigurable Computing 2012:241439, 10 pp. (2012)
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Solution to the 12-ball problem

Answer:
3 measurements 1

e.g.:8 is heavier: l

2

3
Encoded with trits é} &
33 =27 possibilities

http://www.primepuzzle.com/leeslatest/12 ball solution.html (2006)



http://www.primepuzzle.com/leeslatest/12_ball_solution.html

