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Sparse methods 

• Syphilis in WWII 

• Image/file compression 

• Twelve Ball Problem 

Reminder: a vector is S-sparse 
(compressible) if  it has at most S 
non-zero (non-negligible) 
coefficients (e.g. Yves’ and 
Gabriel’s talks) 





Brief re-cap on compressive sampling 

• Unified framework for 
encoding/reconstruction of sparse signals 

• Applications from radar, Herschel space 
observatory, to a single pixel camera 

 

Image:  M. F. Duarte et al., Rice University 

E. Candès, J. Romberg and T. Tao: IEEE Trans. on Information Theory 52(2):489–509 (2006) 



Compressive sampling (CS) framework 

Determined system: M = N 
CS (‘under-determined’): M << N 



 



Compressible/noisy signals 

Find:  𝑥 1  s.t.  𝑦 − Θ𝑥 2 ≤ 𝜖 



Linear Program 

• Optimisation reconstruction methods 

• E.g. Simplex method (linear constraints give 
convex polytope) 



Orthogonal Matching Pursuit (OMP) 

A recursive greedy algorithm 

1. Initialise vectors and determine stopping 
criterion 

2. Get signal estimate by taking most significant 
column from residual vector 

3. Update  residual basis  

4. Update residual vector 

 

 

 

• Similar to CLEAN algorithm used in radio astronomy 
• ‘Easy’ to implement noise-based criteria 



CS results 

Can determine minimum number of samples 
required for perfect reconstruction: 

𝑀 > 𝐶 𝑆 𝜇2  log(𝑁) 

Where C is small (~0.5) , and the mutual coherence: 

Measures how ‘spread out’ the signal is in the sampling domain 

𝜇 ≝  𝑁 max
𝑖,𝑗<𝑁
| < 𝜑𝑖 , 𝜓𝑗 > | 



Mutual coherence 

Guarantees sampled low dimensional subspace 
sufficiently covers sparse basis (Restricted Isometry) 
 
e.g. Delta functions in Fourier domain are minimally 
coherent with time domain:   

E. Candès and J. Romberg, Inverse Problems 23:969–985 (2007) 

𝜇 = 𝑁max
𝑘
 𝛿 𝑓 − 𝑓𝑘 𝑒

𝑖2𝜋𝑓𝑡𝑑𝑡 =  𝑁
1

𝑁
= 1 



CS applications 

Basic ingredients: 

1. Sparse/compressible representation 

2. Low mutual coherence between sensing and 
sparsity bases 



The Sparse Fast Fourier Transform 

• Implements non-recursive OMP 

• Computational complexity for known sparsity 
S: O(S log(N)) 

 

Hassanieh, H., Indyk, P., Katabi, D., and Price, E.: “Nearly Optimal Sparse Fourier 
Transform,” arXiv 1201.2501v1 (12 Jan 2012) 

Compare to FFT [O(N log(N))]:  
Speed-up is O(N/S), so e.g., for N=106 , S=100 : 
  
Here sFFT is (theoretically) 10,000 times as fast as FFT! 



How the sFFT works 

Code available from http://groups.csail.mit.edu/netmit/sFFT/code.html 

FFT: output proportional to N 
sFFT: output proportional to S  



• Very wide---and tuned---bin size ( B ~ √(NS) 
initially, decreasing as coefficients identified)  

• Leakage-free bin filters 

• Use block recovery (i.e. not individual 
coefficients) 

• Iteratively remove identified coefficients from 
bins, not the signal 

G = (Gaussian) * (Box-car) 



Einstein, A. and 
Rosen, N.:"On 
Gravitational 
Waves," Journal 
of the Franklin 
Institute 223, 
pp.43-54 (1937) 

(Or search for:  

“who’s afraid of the 

referee?”) 

Gravitational Waves 



Linearised general relativity 

𝒈𝜇𝜈 = 𝜼𝜇𝜈 + 𝒉𝜇𝜈 

Take small perturbations, h, of the space-time metric: 

□𝒉 𝜇𝜈 = 16π𝐺 𝑻𝜇𝜈 

To finally get the wave-equation (transverse-traceless gauge): 

Put into the Einstein Field Equations: 

𝑮𝜇𝜈 = 8𝜋𝐺
𝑐4
 𝑻𝜇𝜈 



Observations: Hulse and Taylor 

1974: Discovered 

binary pulsar 

1993: Nobel prize 



LASER interferometers 

Michelson type: sensitive, broad-band 



The LIGO Network 

4 km baseline, seismic isolation 



 



 

The LIGO-Virgo Network 



Gravitational wave applications 

Can analyse GW data within a CS framework: 

Φ =  𝐷 × 𝐴 ×𝑊 ×⋯ (time domain) 

Phenomenon (GW) Signal type Sparse basis/frame 

Rotating non-axisymmetric 

neutron stars 

Periodic Fourier domain 

Binary compact object 

coalescense 

Chirp/Gabor Chirplet 

Supernovae, other transients Impulse Time domain 

Stochastic GW background Correlation Correlation space 

Ψ = 

(Doppler shift parameters, antenna pattern modulation, whitening, 
data quality flags … any other linear transform necessary so data is 
‘useable’) 



Case 1: Continuous GWs 
• Rotating, non-axisymmetric neutron stars 

• Signal model relatively well understood 

• Low h0, so average over long time 

Not to scale! 



 



 Neutron star 

Cassiopeia A 

•Young (~300 yr) compact object 
•Position is well known 
•Unknown frequency and spin-down 
parameters 

 

Wette, K. et al.: "Searching for gravitational waves from Cassiopeia A with LIGO," 
Class. Quantum Grav., 25(235011):1-8 (2008) 



The problem: many searches are 
computationally bound 

e.g. Cas A search took 420,000 CPU hrs on Albert Einstein 
Institute’s 32 Tflop Atlas* supercomputer (5,000 CPUs) 

*Data from 2008, when search was performed 



An improvement: resampling 

Heterodyne data and downsample so the Nyquist 
frequency is a function of the search bandwidth 

 Significant speed-up: Cas A would take less than 1/10 the original 
cost. 

P. Patel et al. , Phys. Rev. D 81:084032:1–10 (2010) 



Improvements from sFFT 



Improvements from sFFT 



Performance 

• For a single 30 minute data stretch, searching 
between 100-300 Hz, gives N=720,000 (> 2^19) 

• Randomised trails, for S=20, give run-times: 

 sFFT:       14.8 ms 

 FFTW3:  40.2 ms 

  Speed-up of over 250% !!! 

 

• For N~106, this becomes > 467% 



Will potentially make many (~ 1 dozen) currently 
borderline targets feasible; many more for 
aLIGO 

 

E.g. 

• G350.1-0.3 

• DA 495 (G65.7+1.2) 

• Some estimates for Vela Jr. (G266.2-1.2) 

 

 

 



Case 2: GW burst sources 

Transient, high amplitude events:  

• Compact binary coalescense events 

• Galactic core collapse supernovae 

 

 

Highly energetic: produce range of emission 
species (EM, neutrino, p+, p-, e-, e+, GW 
radiation…) 



Multi-messenger astronomy 



EM Follow-up Programme 
Locating and Observing Optical Counterparts to Unmodelled Pulses 
 

•Independent (EM) confirmation of GW burst events 
•Triggered alerts from IFOs sent to telescopes with wide optical fields 
•ANU’s SkyMapper telescope part of the network 
•Image analysis problem 
 



Burst detection pipelines 

• Omega, continuous wave-burst 

• Look for excess energy in Gabor (time-
frequency) plane 

• Omega: Sine-Gaussian wavelets 

ψ τ = 𝐴 exp
−(2𝜋𝑓)2

𝑄2
(τ − 𝑡)2   exp 2𝜋𝑖 𝑓(τ − 𝑡)  

𝐴 = 
8𝜋𝑓2

𝑄2

1
4 

   



 



The problem: poor position reconstruction 



An improvement: chirplets 

• Chirplet approach: add chirp rate parameter d 

 

 

 

• Covers 10 times more parameter space than 
Omega 

• SNR enhancement of 45% (range increase of 
~40%) 

• High SNR signal is sparse in the Chirplet domain 

ψ τ = 𝐴 exp
−(2𝜋𝑓)2

𝑄2
(τ − 𝑡)2   exp 2𝜋𝑖 𝑓 τ − 𝑡 + 

𝑑

2
τ − 𝑡 2  

É Chassande-Mottin et al., CQG 27:194017 (2010) 



Nyquist limitations 

• Nyquist limit in time-frequency plane (aliasing 
of chirplet templates), so reduced timing 
precision 

• Nyquist limit: equivalent to saying that for a 
linear system with N unknown coefficients, 
require N equations to determine system. 



The solution: compressive sampling in 
time-frequency plane 

Patrick Flandrin and Pierre Borgnat: “Time-frequency energy distributions meet 
compressed sensing,” IEEE Transactions on Signal Processing, 58(6):2974–2982 (2010) 



Results on spectral lines 

Under-sampling ratio: N/M ~ 10 times 



Noise 

E.g. applied to CW detection statistic (the F-statistic). Assuming 
Gaussian noise, Chi-squared with 4 d.f. 

𝑦 = 𝜙𝑥 + 𝑛  𝑥2 ~ χ4
2(𝜆)

𝑁

𝑘=1

 

χ4
2 𝑥;  𝜙, 𝑦 =  

𝑛𝑘
2

𝜎𝑘
2 ≤ 𝜖

2

4

𝑘=1

 

noting that p(χ4
2 ≤ 9.49) = 0.95, can get 95% C.I. from 𝜖2 = 9.49 



 



Issues 

• Pure delta functions in time give maximum 𝜇… 
Can’t use CS 

• LIGO/Virgo GW detectors most sensitive 
~O(100) Hz---confined to compact region of 
Gabor plane 

• Increased SNR---improve localisation of 
transient events in Gabor plane 

 



Future work 

• Faster OMP implementation: Field-
Programmable Gate Arrays, ~3,000 times 
speed-up over conventional processors* 

• Other GW data analysis applications 

• CS applications in experimental GW detection 
methods (e.g. spectral line hunting) 

• Noise studies 

* R. Inta et al., Int. J. of Reconfigurable Computing 2012:241439, 10 pp. (2012) 



Thanks! 

This research was partly supported under the 
Australian Research Council's Discovery Projects 
funding scheme (DP1092556) and an ANU Major 
Infrastructure Grant (11MEC14) 



Thanks for listening! 

Ra.Inta@anu.edu.au 



Solution to the 12-ball problem 

http://www.primepuzzle.com/leeslatest/12_ball_solution.html (2006) 

http://www.primepuzzle.com/leeslatest/12_ball_solution.html

