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GW burst sources 

Transient, high amplitude events:  

• Compact binary coalescense events 

• Galactic core collapse supernovae 

 

 

Highly energetic: produce range of emission 
species (EM, neutrino, p+, p-, e-, e+, GW 
radiation…) 



Multi-messenger astronomy 



EM Follow-up Programme 
Locating and Observing Optical Counterparts to Unmodelled Pulses 
 

•Independent (EM) confirmation of GW burst events 
•Triggered alerts from IFOs sent to telescopes with wide optical fields 
•Alerts handled by LUMIN 
•ANU’s SkyMapper telescope part of the network 
•Image analysis problem 
 



Burst detection pipelines 

• Omega, continuous wave-burst 

• Look for excess energy in Gabor (time-
frequency) plane 

• Omega: Sine-Gaussian wavelets 
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LIGO-Virgo: poor position reconstruction 



Improvements to localisation 

• Chirplet approach: add chirp rate parameter d 

 

 

 

• Covers 10 times more parameter space than 
Omega 

• SNR enhancement of 45% (range increase of 
~40%) 

• High SNR signal is sparse in the Chirplet domain 
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É Chassande-Mottin et al., CQG 27:194017 (2010) 



Nyquist limitations 

• Nyquist limit in time-frequency plane (aliasing 
of chirplet templates), so reduced timing 
precision 

• Nyquist limit: equivalent to saying that for a 
linear system with N unknown coefficients, 
require N equations to determine system. 



Sparse methods 

• Syphilis in WWII 

• Cylons in `Battlestar 
Galactica’ 

• Twelve Ball Problem 





Compressive sampling (CS) 

• Unified framework for 
encoding/reconstruction of sparse signals 

• Applications from radar, Herschel space 
observatory, to a single pixel camera 

 

Image:  M. F. Duarte et al., Rice University 

E. Candès, J. Romberg and T. Tao: IEEE Trans. on Information Theory 52(2):489–509 (2006) 



CS framework 

Determined system: M = N 
CS (‘under-determined’): M << N 



 



Compressible/noisy signals 

Find:  𝑥 1  s.t.  𝑦 − Θ𝑥 2 ≤ 𝜖 



Linear Program 

• Optimisation reconstruction methods 

• E.g. Simplex method (linear constraints give 
convex polytope) 



Orthogonal Matching Pursuit 

• Recursive Greedy algorithm 

• Very similar to CLEAN algorithm used in radio 
astronomy 

• Easy to implement noise-based criteria 



CS results 

Can determine minimum number of samples 
required for perfect reconstruction: 

𝑀 > 𝐶 𝑆 𝜇2  log(𝑁) 

Where C is small (~0.5) , and the mutual coherence: 

Measures how ‘spread out’ the signal is in the sampling domain 

𝜇 ≝  𝑁 max
𝑖,𝑗<𝑁
| < 𝜑𝑖 , 𝜓𝑗 > | 



Mutual coherence 

Guarantees sampled low dimensional subspace 
sufficiently covers sparse basis (Restricted Isometry) 
 
e.g. Delta functions in Fourier domain are minimally 
coherent with time domain:   

E. Candès and J. Romberg, Inverse Problems, 23:969–985 (2007) 
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CS applications 

Require: 

1. Sparse/compressible representation 

2. Low mutual coherence 



GW applications 

Interpret GW data in CS framework: 

Φ =  𝐷 × 𝐴 ×𝑊×⋯ (time domain) 

Phenomenon (GW) Signal type Sparse basis/frame 

Rotating non-axisymmetric 

neutron stars 

Periodic Fourier domain 

Binary compact object 

coalescense 

Chirp/Gabor Chirplet 

Supernovae, other transients Impulse Time domain 

Stochastic GW background Correlation Correlation space 

Ψ = 

(Doppler shift parameters, antenna pattern modulation, whitening, 
data quality flags … any other linear transform necessary so data’s 
‘useable’) 



Results on spectral lines 

Under-sampling ratio: N/M ~ 10 times 



Noise 

E.g. applied to CW detection statistic (the F-statistic). Assuming 
Gaussian noise, Chi-squared with 4 d.f. 

𝑦 = 𝜙𝑥 + 𝑛  𝑥2 ~ χ4
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noting that p(χ4
2 ≤ 9.49) = 0.95, can get 95% C.I. from 𝜖2 = 9.49 



 



GW burst detection 

• Pure delta functions in time give maximum 𝜇… 
Can’t use CS?!? 

• LIGO/Virgo GW detectors most sensitive 
~O(100) Hz---confined to compact region of 
Gabor plane 

• Increased SNR---improve localisation of 
transient events in Gabor plane 

 

P. Flandrin and P. Borgnat: IEEE Transactions on Signal Processing, 58(6):2974–2982 (2010) 



Breaking News: The ‘FFFT’ 

• Sparse Fast Fourier Transform 

• Implements non-recursive OMP 

• Computational complexity: O(S log(N)) 

 

Hassanieh, H., Indyk, P., Katabi, D., and Price, E.: “Nearly Optimal Sparse Fourier 
Transform,” arXiv 1201.2501v1 (12 Jan 2012) 

Compare to FFT [O(N log(N))]:  
Speed-up is O(N/S), so for N=106 , S=100 : 
  
FFFT is 10,000 times as fast as FFT! 



Future work 

• Faster OMP implementation: Field-
Programmable Gate Arrays, ~3,000 times 
speed-up over conventional processors 

• Other GW data analysis applications 

• CS applications in experimental GW detection 
methods (e.g. spectral line hunting) 



Thanks! 
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Thanks for listening! 
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Solution to the 12-ball problem 

http://www.primepuzzle.com/leeslatest/12_ball_solution.html (2006) 

http://www.primepuzzle.com/leeslatest/12_ball_solution.html

