

Hyperfine Spectroscopy and Characterization of Muonium Centers in ZnGeP₂

Rick Mengyan, M.S.

Graduate Research Assistant Texas Tech University, Physics Lubbock, TX 79409-1051

Texas Section APS Meeting 24-Oct-2009

Research supported by: U.S. National Science Foundation, Welch Foundation, National Sciences and Engineering Research Council of Canada

Acknowledgements

Advisor:

R.L. Lichti (Department of Physics, Texas Tech Univ.)

Collaborators:

B.B. Baker (Department of Physics, Texas Tech Univ.)

K.H. Chow (Dept. of Physics, Univ. of Alberta, Edmonton, Canada)

Y.G. Celebi (Dept. of Physics, Istanbul Univ., Istanbul, Turkey)

K.T. Zawilski (BAE Systems, Adv. Systems and Tech. Nashua, NH)

P.G. Schunemann (BAE Systems, Adv. Systems and Tech. Nashua, NH)

Facilities:

ISIS (Didcot, UK); TRIUMF (Vancouver, BC)

- MuSR = Muon Spin Research $(\underline{R}elaxation/\underline{R}otation/\underline{R}esonance)$
- App: Semiconductors exp. analog for H defects
- Implant 100% Spin-polarized Muons
- Spin vector evolves in local magnetic environment
- e⁺ emitted preferentially along spin direction
- e⁺ count information then analyzed

B.D. Patterson, *Rev. Mod. Phys.*, **60**, (1988) 1

Brewer, http://musr.ca

Muonium (Mu $\equiv \mu^+ e^-$)

u

	Muon	Proton
Mass (m_p)	$0.1126 \approx 1/9$	1
Spin	1/2	1⁄2
Gyro. Ratio, γ (s ⁻¹ T ⁻¹)	8.51607 x 10^8 $\approx 3.2 x \gamma_P$	2.67520 x 10 ⁸
Lifetime, τ (µs)	2.19709	Stable
	Muonium	Hydrogen
Reduced e^{-} mass (m_e)	0.995187	0.999456
Ground-state Radius (Å)	0.531736	0.529465
Ground-state Energy (eV)	-13.5403	-13.5984

Muonium

e

Overview of MuSR: TF

Field applied \perp to initial spin polarization $\rightarrow \mu^+$ spin precession about applied field

$$\begin{split} Mu^{0} &= \mu^{+} + e^{-} \\ \rightarrow \text{ spin-orbit coupling} \\ \rightarrow \text{ affects local field of } \mu^{+} \\ \rightarrow \text{ diff prec. Freq for:} \\ |\uparrow_{\mu} > + |\uparrow_{e} > \& |\uparrow_{\mu} > + |\downarrow_{e} > \end{split}$$

Hyperfine Spectroscopy of ZnGeP₂ (from TF-µSR)

Overview of MuSR: LF

R.F. Kiefl, R. Kadono, et al., Phys Rev Lett, 62 (1989) 7

Brewer, http://musr.ca

From LF-µSR

*HF info from T_1^{-1} depolarization curves (field dep. of Amp.)

**Current analysis suggests axially symmetric anisotropic HF interaction with:

 $\rightarrow A_2 = 3185 \text{ MHz } \& \text{ D} = 374 \text{ MHz}$

*F.L. Pratt, Philos. Mag. Lett. 75 (1997) 371.

TF data:LF data: $A_1 = 1961.8 (+/-2.3) \text{ MHz}$ $A_2 = 3185 \text{ MHz}$ (isotropic – experimental determination)D = 374 MHz

Why the different HF?

ZnGeP₂: Structure

Chalcopyrite structured II-IV-V₂ material

Zincblende structure (c.f. III-V), doubled unit-cell

III-Sublattice replaced by II-IV atoms, 1:1

V replaced by V₂

2 T-sites: $T_V \& T_{II-IV}$

ZnGeP₂: II-IV pseudo-T-site

*Unequal charge on Zn (+1.2q_e) & Ge (+1.8q_e) \rightarrow distorted 1s Ψ \rightarrow anisotropy with [110] axial symmetry

$$\vec{E} = \mp \frac{1}{4\pi\varepsilon_0} \frac{32\sqrt{3}}{9} \left(q_{Zn} - q_{Ge}\right) \left[110\right]$$

Seen in LF but not TF => not promptly formed, but visited throughout lifetime

* P. Zapol, et. al. J. Appl. Phys. 79 (1996) 671

The Sample

Single Crystal

Nominally undoped

$7.1 \times 8.5 \times 1.1 \text{ mm}^3$

Orientation: [001]

Summary: Mu0 Centers in ZnGeP₂

- 1) Implantation
- 2) Formation of Mu^0 in T_V with isotropic: $A_1 = 1961.8$ (+/- 2.3) MHz (Visible in TF)
- 3) Mu^0 hops w/ ID change ea. hop (not discussed)
- 4) Mu⁰ in T_{II-IV} with anisotropic: $A_2 = 3185$ MHz D = 374 MHz (+/- 10%) (Visible in LF Repolarization data)

This completes our discussion of the Muonium centers in $ZnGeP_2$

Thank You

Hyperfine Spectroscopy of ZnGeP₂ (*from TF-µSR*)

ZnGeP₂: Structure

Chalcopyrite structured II-IV-V₂ material

Zincblende structure, doubled unit-cell

III-Sublattice replaced by II-IV atoms, 1:1

V replaced by V_2

