Hyperfine Spectroscopy and Characterization of Muonium Centers in ZnGeP$_2$

Rick Mengyan, M.S.

Graduate Research Assistant
Texas Tech University, Physics
Lubbock, TX 79409-1051

Texas Section APS Meeting
24-Oct-2009

Research supported by:
U.S. National Science Foundation, Welch Foundation,
National Sciences and Engineering Research Council of Canada
Acknowledgements

Advisor:
R.L. Lichti (Department of Physics, Texas Tech Univ.)

Collaborators:
B.B. Baker (Department of Physics, Texas Tech Univ.)
K.H. Chow (Dept. of Physics, Univ. of Alberta, Edmonton, Canada)
Y.G. Celebi (Dept. of Physics, Istanbul Univ., Istanbul, Turkey)

Facilities:
ISIS (Didcot, UK); TRIUMF (Vancouver, BC)
Overview of MuSR

- MuSR = Muon Spin Research (Relaxation/Rotation/Resonance)
- App: Semiconductors – exp. analog for H defects
- Implant 100% Spin-polarized Muons
- Spin vector evolves in local magnetic environment
- e\(^+\) emitted preferentially along spin direction
- e\(^+\) count information then analyzed
Muonium

<table>
<thead>
<tr>
<th></th>
<th>Muon</th>
<th>Proton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (m_p)</td>
<td>0.1126 ≈ 1/9</td>
<td>1</td>
</tr>
<tr>
<td>Spin</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>Gyro. Ratio, γ ($s^{-1} T^{-1}$)</td>
<td>8.51607 x 10^8 ≈3.2 x γ_p</td>
<td>2.67520 x 10^8</td>
</tr>
<tr>
<td>Lifetime, τ (μs)</td>
<td>2.19709</td>
<td>Stable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Muonium</th>
<th>Hydrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced e$^-$ mass (m_e)</td>
<td>0.995187</td>
<td>0.999456</td>
</tr>
<tr>
<td>Ground-state Radius (Å)</td>
<td>0.531736</td>
<td>0.529465</td>
</tr>
<tr>
<td>Ground-state Energy (eV)</td>
<td>-13.5403</td>
<td>-13.5984</td>
</tr>
</tbody>
</table>

Brewer, http://musr.ca
Overview of MuSR: TF

Transverse Field (TF)-μSR

Field applied \(\perp \) to initial spin polarization
\(\rightarrow \) \(\mu^+ \) spin precession about applied field

\(\text{Mu}^0 = \mu^+ + e^- \)
\(\rightarrow \) spin-orbit coupling
\(\rightarrow \) affects local field of \(\mu^+ \)
\(\rightarrow \) diff prec. Freq for:
\(|\uparrow \mu> + |\uparrow e> \& |\uparrow \mu> + |\downarrow e> \)

Brewer, http://musr.ca
Hyperfine Spectroscopy of ZnGeP$_2$
(from TF-μSR)

- 431.55 MHz (+/- 0.004)
- 1534.07 MHz (+/- 0.06)

$A_1 = \nu_{34} - \nu_{12} = 1965.6$ MHz

ν_{12}
μ^+
ν_{34}

542.16 MHz

Mu0 in ZnGeP$_2$
4.0 Tesla

Overview of MuSR: LF

B applied \parallel to μ^+ spin pol. → breaks HF interaction

\Rightarrow Change in Spin P(t) from:
1) local environment (nearby nuclear moments)
2) muonium motion (e^- spin-flip w/ each site change, transferring back to μ^+ contributing to $\Delta P(t)$)

HF info from T_1^{-1} depolarization curves (field dep. of Amp.)

Current analysis suggests axially symmetric anisotropic HF interaction with:

$\rightarrow A_2 = 3185 \text{ MHz} \ & D = 374 \text{ MHz}$

Note: TF vs LF results for HF term(s)

TF data:

\[A_1 = 1961.8 \pm 2.3 \text{ MHz} \]
(isotropic – experimental determination)

LF data:

\[A_2 = 3185 \text{ MHz} \]
\[D = 374 \text{ MHz} \]

Why the different HF?

ZnGeP$_2$: Structure

- Chalcopyrite structured II-IV-V$_2$ material
- Zincblende structure (c.f. III-V), doubled unit-cell
- III-Sublattice replaced by II-IV atoms, 1:1
- V replaced by V$_2$
- 2 T-sites: $T_V \ & T_{\text{II-IV}}$
ZnGeP$_2$: II-IV pseudo-T-site

*Unequal charge on Zn (+1.2q_e) & Ge (+1.8q_e) → distorted 1s Ψ
→ anisotropy with [110] axial symmetry

$$\vec{E} = \mp \frac{1}{4\pi\varepsilon_0} \frac{32\sqrt{3}}{9} (q_{Zn} - q_{Ge}) [110]$$

Seen in LF but not TF
\Rightarrow not promptly formed, but visited throughout lifetime

The Sample

Single Crystal

Nominally undoped

7.1x8.5x1.1 mm3

Orientation: [001]
Summary: Mu0 Centers in ZnGeP$_2$

1) Implantation

2) Formation of Mu0 in T_V
 with isotropic: $A_1 = 1961.8 \pm 2.3$ MHz
 (Visible in TF)

3) Mu0 hops w/ ID change ea. hop (not discussed)

4) Mu0 in T_{II-IV} with anisotropic:
 $A_2 = 3185$ MHz D = 374 MHz (+/- 10%)
 (Visible in LF Repolarization data)

This completes our discussion of the Muonium centers in ZnGeP$_2$
Thank You
Hyperfine Spectroscopy of ZnGeP$_2$
(from TF-μSR)

\[
A(T \rightarrow 0) = 1961.8 \text{ MHz (} +/\- 2.3)
\]

ZnGeP$_2$: Structure

- Chalcopyrite structured II-IV-V$_2$ material
- Zincblende structure, doubled unit-cell
- III-Sublattice replaced by II-IV atoms, 1:1
- V replaced by V$_2$