

Probing internal magnetic field features of the II-IV-V2:Mn DMS via MuSR

An in depth study exploring fundamental properties and characteristic of local magnetic features in II-IV-V2:Mn chalcopyrite DMS systems

Rick Mengyan, M.Sc.

Graduate Research Assistant Texas Tech University, Physics Lubbock, TX 79409-1051

Collaboration:

R.L. Lichti, B.B. Baker, L.J. Hudy *Texas Tech University*Y.G. Celebi, E. Catek *Istanbul University, Turkey*K.T. Zawilski, P.G. Schunemann *BAE Systems, Adv. Systems and Tech. Nashua, NH*Spring APS Texas Section Meeting: 22-24/Mar/2012 Support: Provided by: US DoE

Experimental Facility:

EMU Beamline at ISIS (Rutherford Appleton Labs, Didcot, UK) LF-µSR

LF- μ SR on ZnGeP2:Mn: T=180 with B_{LF}=1.0 kG

Polarization Function

Fit Parameters: A_i, T_j

 $\frac{1}{T_j} = \frac{2\Delta_i^2}{v_j}$

For dilute alloys: $\rho(\Delta_i) = \sqrt{\frac{2}{\pi}} \frac{a}{\Delta_i^2} \exp\left(\frac{-a^2}{2\Delta_i^2}\right)$ $\Delta = \gamma_{\mu} \mathbf{B}_i$

$$P_z^L(t) = \int_0^\infty P_z^G(t) \rho(\Delta) d\Delta = \cdots$$

ie: A. Schenk, *Muon Spin Rotation Spectroscopy: Principles and Applications in Solid State Physics* (Adam Hilger Ltd, Bristol, 1985).

B-Field at Mu+ Site

Localized magnetic density contributing to \mathbf{B}_{loc} via:

- 1) classical dipole interaction
- 2) RKKY [metals] or via hyperfine field [insulators]

$$\mathbf{B}_{\text{loc}} = \langle \mathbf{B}_{\text{loc}} \rangle + \delta \mathbf{B}_{\text{loc}}$$

= $\mathbf{B}_{\text{ext}} + \mathbf{B}_{\text{dip}} + \mathbf{B}_{\text{hyp}} + \mathbf{B}_{\text{fermi}} + \delta \mathbf{B}_{\text{loc}}$

 $\mathbf{B}_{ext} = Applied External Field$

$$\mathbf{B}_{dip} = \frac{\mu_0}{4\pi} \sum_{i=1}^{N} \left(-g_i \mu_B \right) \left[-\frac{\mathbf{J}_i}{r_i^3} + \frac{3(\mathbf{J}_i \cdot \mathbf{r}_i)\mathbf{r}_i}{r_i^5} \right] + \frac{\mu_0}{4\pi} \sum_{i=1}^{N} \left(-\gamma_i \hbar \right) \left[-\frac{\mathbf{I}_i}{r_i^3} + \frac{3(\mathbf{I}_i \cdot \mathbf{r}_i)\mathbf{r}_i}{r_i^5} \right]$$

= dipolar field -- sum of contributions from localized magnetic moments over whole crystal

 $\mathbf{B}_{\text{hyp}} = \text{field from HF interaction; } \mathbf{B}_{hyp} = \frac{\mu_0}{4\pi} \sum_{i=1}^{N'} \frac{(-g_i \mu_B) H_{r_i}}{v_c} \mathbf{J}_i$ short range magnetic interaction between μ^+ and local magnetic moments near μ^+ site $\mathbf{B}_{\text{Fermi}} = \text{Fermi magnetic field operators, i.e.:}$ Fermi contact interaction [magnetic interaction of μ^+ & e⁻ spins for *s* & *p* e⁻ metals] RKKY – indirect exchange between μ^+ and unpaired e⁻ via conduction e⁻ [*d* & *f* materials] Transferred hyperfine field [μ^+ & e⁻ wavefunction overlap in insulators]

ie: A. Schenk, Muon Spin Rotation Spectroscopy: Principles and Applications [...] (Adam Hilger Ltd, Bristol, 1985).

Practical Material: II–IV–V₂:Mn

ZnGeP₂:Mn

 E_g ≈ 2.0 eV & FM order above RT (T_c = 310K to 350K)
 →Prime choice for *spin*-based devices

CdGeAs₂:Mn

• $\overline{E_g} \approx .67 \text{ eV \& FM}$ order above RT ($T_c=355$ K)

Mn²⁺ Substitution:

- Isovalent Group-II
- Double Acceptor Group-IV
- Light conc. of Mn²⁺ on IV Heavy conc. of Mn²⁺ on II
 →AFM if Mn only on II

 \rightarrow With Mn sub on IV sites, provides extra carriers, mix results in FM order

P.W. Mengyan, et al. APS (2012)

High quality, single crystal, P-type samples, doping <5% Mn \rightarrow Dilute regime

P.W. Mengyan, et al., Unpublished data, ISIS, Dec 2012

ZnGeP2:Mn – Preliminary results

P.W. Mengyan, et al., Unpublished data, ISIS, Dec 2012

Future Work

Additional data fitting & theoretical modeling → Develop model designed specifically for these DMS systems → Reanalyze data with new model, extract fluctuation rates, energies, etc

These measurements supplementary to additional work to characterize internal field properties and characteristics, ie: \rightarrow distribution

- \rightarrow structure
- \rightarrow dynamics

 \rightarrow how magnetism carried/transferred throughout DMS

Thank you

Questions, Comments, etc?

Collaboration:

R.L. Lichti, B.B. Baker, L.J. Hudy *Texas Tech University*Y.G. Celebi, E. Catek *Istanbul University, Turkey*K.T. Zawilski, P.G. Schunemann *BAE Systems, Adv. Systems and Tech. Nashua, NH*Spring APS Texas Section Meeting: 22-24/Mar/2012

Support:

Provided by: US DoE

Experimental Facility:

EMU Beamline at ISIS (Rutherford Appleton Labs, Didcot, UK)

$$\mathbf{B}_{\text{dip}}$$
$$\mathbf{B}_{\text{loc}} = \mathbf{B}_{\text{ext}} + (\mathbf{B'}_{\text{dip}} + \mathbf{B}_{\text{Lor}} + \mathbf{B}_{\text{dem}} + \delta \mathbf{B}_{\text{dip}}) + \mathbf{B}_{\text{hyp}}$$

 $\mathbf{B}_{ext} = Applied External Field$

$$\mathbf{B}_{dip} = \frac{\mu_0}{4\pi} \sum_{i=1}^{N} \left(-g_i \mu_B \right) \left[-\frac{\mathbf{J}_i}{r_i^3} + \frac{3(\mathbf{J}_i \cdot \mathbf{r}_i)\mathbf{r}_i}{r_i^5} \right] + \frac{\mu_0}{4\pi} \sum_{i=1}^{N} \left(-\gamma_i \hbar \right) \left[-\frac{\mathbf{I}_i}{r_i^3} + \frac{3(\mathbf{I}_i \cdot \mathbf{r}_i)\mathbf{r}_i}{r_i^5} \right]$$

= dipole field expressed as sum of contributions from magnetic moments over whole crystal

- $\mathbf{B'}_{dip} =$ Sum of fields from within *Lorentz sphere* centered at μ^+ site *sphere* taken to be large enough to allow \mathbf{B}_{dip} sum to converge
- $\mathbf{B}_{\text{Lor}} = \text{Field from charges on surface of Lorentz sphere, ie:} \mathbf{B}_{\text{Lor}} = \frac{\mu_0}{3} \mathbf{M}_{\text{Lor}}$ $\mathbf{M}_{\text{Lor}} = \text{vector sum magnetic moments inside sphere per unit volume}$
- $\mathbf{B}_{dem} = \text{Field from charges on the surface of sample, ie: } \mathbf{B}_{dem} = -\mu_0 \mathbf{N} \mathbf{M}_{meas}$ $\mathbf{N} = \text{Demagnetization tensor ; } \mathbf{M}_{meas} = \text{Bulk magnetization of sample}$
- $\delta \mathbf{B}_{dip} = \text{Fluctuating component of dipolar field contribution}$ $\mathbf{B}_{hyp} = \text{field from HF interaction; } \mathbf{B}_{hyp} = \frac{\mu_0}{4\pi} \sum_{i=1}^{N'} \frac{(-g_i \mu_B) H_{\mathbf{r}_i}}{v_c} \mathbf{J}_i$ short range magnetic interaction between μ^+ and local magnetic moments near μ^+ site P.W. Mengyan, et al. APS (2012)

Experimentally Accessible Analog to Hydrogen

	Muon	Proton
Mass (m_p)	$0.1126 \approx 1/9$	1
Spin	1⁄2	1/2
Gyro. Ratio, γ (s ⁻¹ T ⁻¹)	8.51607 x 10 ⁸ $\approx 3.2 \text{ x } \gamma_{\text{P}}$	2.67520 x 10 ⁸
Lifetime, $ au$ (µs)	2.19709	Stable
	Muonium	Hydrogen
Red. e ⁻ mass (m_e)	0.995187	0.999456
G. S. Radius (Å)	0.531736	0.529465
G. S. Energy (eV)	-13.5403	-13.5984

Muonium (Mu $\equiv \mu^+ e^-$)

FIG. 1. The hyperfine energy-level (Breit-Rabi) diagram for isotropic 1s-Mu as a function of the dimensionless magnetic field $x = B(g_{\mu}\mu_{\mu} - g_{e}\mu_{B})/(hA)$. A fictitious value for the quantity ω_{-}/ω_{+} has been used for clarity; its true value is 0.9904. The dashed lines are the high-field asymptotes for levels 2 and 4.

B.D. Patterson, Rev. Mod. Phys., 60, (1988) 1

P.W. Mengyan, et al. APS (2012)

Brewer, http://musr.ca \rightarrow

Why μ^+ ?

	Muon	Proton
Mass (m_p)	$0.1126 \approx 1/9$	1
Spin	1/2	1⁄2
Gyro. Ratio, γ (s ⁻¹ T ⁻¹)	8.51607 x 10 ⁸ $\approx 3.2 \text{ x } \gamma_{\text{P}}$	2.67520 x 10 ⁸
Lifetime, τ (µs)	2.19709	Stable
	Muonium	Hydrogen
Red. e ⁻ mass (m_e)	0.995187	0.999456
G. S. Radius (Å)	0.531736	0.529465
G. S. Energy (eV)	-13.5403	-13.5984

 $\mu^+ \sim p^+$

 $m_{\mu} \approx 1/9 m_{p}$ $m_{\mu} \approx 207 m_{e}; \mathbf{S} = 1/2$

Local probe

 $Mu^0 = \mu^+ + e^-$

Mu⁰~light isotope H ie: Early history of H impurities

P.W. Mengyan, et al. APS (2012)

Muonium (Mu $\equiv \mu^+ e^-$)

Brewer, http://musr.ca → B.D. Patterson, *Rev. Mod. Phys.*, **60**, (1988) 1

$TF-\mu SR$

Brewer, http://musr.ca

B.D. Patterson, *Rev. Mod. Phys.*, **60**, (1988) 1 P.W. Mengyan, et al. APS (2012)

TF- μ SR: Sample signal from relaxing μ^+

Brawarn http://anuspsca012)

LF-µSR

B applied || to μ^+ spin pol. See time evolution of P(t) along original direction

=> Change in Spin P(t) from:
1) local environment (nearby nuclear moments)
2) muonium motion
(e⁻ spin-flip w/ each site change, transferring back to μ⁺ contributing to Δ P(t))

R.F. Kiefl, R. Kadono, et al., Phys Rev Lett, 62 (1989) 7

Brewer, http://pwwsmaagyan, et al. APS (2012)

RF-µSR

Start with LF setup Oscillating field applied to drive transitions between Zeeman level(s)

Picture: J. Lord, <u>RF-µSR and Pulsed Techniques</u>, http://www.isis.stfc.ac.uk/groups/muons/muon-training-school

Brewer, http://pwstMeagyan, et al. APS (2012)

$ZF-\mu SR$

No net B applied See time evolution of P(t) in natural environment

=> Change in Spin P(t)
from:
1) local environment
(nearby nuclear moments)
2) μ⁺ motion

R.F. Kiefl, R. Kadono, et al., *Phys Rev Lett*, **62** (1989) 7 P.W. Mengyan, et al. APS (2012)

Brewer, http://musr.ca

Practical Material: II–IV–V₂:Mn

ZnGeP₂:Mn

• $E_g \approx 2\overline{.0} \text{ eV }$ & FM order above RT (T_c = 310K to 350K)

 \rightarrow Prime choice for *spin*-based devices

CdGeAs₂:Mn

• $E_g \approx .67 \text{ eV \& FM}$ order above RT ($T_c=355$ K)

Mn²⁺ Substitution:

- Isovalent Group-II
- Double Acceptor Group-IV
- Light conc. of Mn²⁺ on IV Heavy conc. of Mn²⁺ on II
 →AFM if Mn only on II

 \rightarrow With Mn sub on IV sites, provides extra carriers, mix results in FM order

P.W. Mengyan, et al. APS (2012)

Polarization Function

$$P_z^L(t) = \int_0^\infty P_z^G(t) \rho(\Delta) d\Delta = \dots = \exp\left[-\left(\frac{4a^2t}{\nu}\right)^{1/2}\right]$$