Project Focus

•DMS systems gaining importance as prospects in spin-based electronics

•Mechanism responsible for connecting local magnetic features to bulk magnetic properties – not yet understood in DMS systems

MuSR & μ^+ as Local Probe [1]

•Muon Spin Relaxation utilizes unique sensitivity of 100% spin polarized and positively charged muons to probe local magnetic and electronic environment

•Local B-field environment for μ :

$$B_{loc} = \langle B_{loc} \rangle + \delta B_{loc}$$

= $B_{ext} + B_{dip} + B_{hyp} + B_{fermi} + \delta B_{loc}$

 \boldsymbol{B}_{ext} = Applied external field

 $\boldsymbol{B}_{dip} = \text{dipolar field}$

- \rightarrow Sum of localized moments over entire crystal \rightarrow Including site to site differences
- \boldsymbol{B}_{hvp} = Field from HF interaction
- \rightarrow Short range magnetic interaction between μ^+ and local electronic moments (cf: wavefunction overlap)

 \boldsymbol{B}_{fermi} = Fermi contact interaction

- \rightarrow Mag. interaction of $\mu^+\&e^-$ spins for $s\&p e^-$ metals \rightarrow RKKY – indirect exchange between μ^+ and
- unpaired e^- via conduction e^- [*d*&*f* materials] \rightarrow Transferred hyperfine field
- $[\mu^+ \& e^-$ wavefunction overlap in insulators]
- δB_{loc} = Contribution from fluctuation in neighboring magnetic moments $\rightarrow v$

ZnGeP₂:Mn

• $E_g \approx 1.83$ eV to 2.0 eV (decreases as Mn conc. increases) [2] • EM order above RT (T ≈ 310 K to 350K) [2]	• BAE Systems provided high quality, p-type ZnGeP ₂ :Mn	A
• AFM below 47K for $Mn > 5\%$ [2] • DM(AEM below 47K mixed state for $Mn < 5\%$ [2]	•All samples cut from the same single crystal boule from starting melt of 1.6% Mn	•
 PM/AFM below 4/K mixed state for Min < 5% [2] Prime candidate for spin-based electronics 	• AA \rightarrow lowest Mn content; FF \rightarrow Highest Mn content	S
(1) Semiconducting properties(2) FM and AFM characteristics		•
• Mn ²⁺ substitution:	<u>The Experiment</u>	
 (1) Group II: Isovalent (high concentration of Mn²⁺) (2) Group IV: Double Acceptor (light concentration of Mn²⁺) (3) Result of (1) and (2) [ie hole abundance] is strong FM coupling instead of the AFM order produced by group II substitution only 	• LF muon spin relaxation measurements performed using the EMU MuSR spectrometer on a surface muon channel at ISIS in Didcot, UK	F
 Powder XRD results [3] (1) support 2nd ordering transition (2) lacks evidence to conclusively demonstrate if small inclusions of MnP dominate magnetic features 	 4 different ZnGeP₂:Mn samples, varying Mn concentration Temperature scans at B_{LF}=1kG and B_{LF}=3.75kG B-field scans at various temperatures 	
 • NMR [4] (1) suggests 90+% of Mn atoms in MnP impurity phase with nm sized clusters for 8% to 15% Mn 	• P(t) fit with two Lorentzian relaxing components and one non-relaxing component	•
(2) No additional information for samples with Mn concentration $< 8\%$	References [1] A. Schenk, <i>Muon Spin Rotation Spectroscopy: Principles and Applications […]</i> (Adam Hilder Ltd	d, Brist

Acknowledgement:

Research is supported by the U.S. Department of Energy (Grant DE-SC0001769).

Samples

- [2] Cho, et al., Phys Rev Lett. 88 (2002) 257203 [3] Aitken, et al., Chem Mater 19 (2007) 5272-5278
- [4] Hwang, et al Appl Phys Lett 83 (2003) 1809-1811
- [5] Uemura, Phys Rev B. 31 (1985) 546; Moriya, Prog. Theor. Phys, 16 (1956) 23

Observed Features

FM Fluctuations (\bullet, Rlx_1) [5]:

 $\frac{1}{T_1} \sim \frac{2\Delta_i^2}{\nu} |T_l^1 = \mu^+ \text{ Rlx rate; } \nu = \text{Spin fluctuation rate}$

 $\Delta_i = \gamma_\mu \mathbf{B}_i = (\mu \text{ gyromagnetic ratio})$ (RMS value fluctuating field)

Short Range FM Correlations (**A**, *Rlx_2*):

Additional measurements and modeling required to positively identify and further characterize short range correlations

Solutions related to Spin Polaron ($\bullet \& \blacktriangle$):

- Additional measurements and modeling required to positively identify and further characterize fluctuations above 400K
- $CdGeAs_2:Mn(3\%)$
- [very similar properties to $ZnGeP_2$:Mn, $T_c > 300K$] Spin precession results indicate SP above 300K

tol, 1985).

Future Work and Open Questions

• Overall goal: Further characterize magnetic properties and further the understanding of magnetism within DMS systems

• Additional analysis and modeling to achieve better separation of relaxation rates in regions that clearly have more than 2 relaxing components; ie. 300K to 500K region in the 1kG measurements of sample 'AA' (Fig 3)

• Higher field LF measurements to slow fluctuations enough to *actually* be able to measure and follow fluctuations through transition regions

• Muon spin precession measurements to characterize local magnetic fields and features; ie:

(1) Identify μ^+ , Mu⁰ and Mu⁰-like states

(2) Check for well defined internal fields in FM regime

(3) Investigate spin polaron formation and properties

• Modeling of fluctuations in DMS systems for AFM, FM, SP • This work is start of the large scale project of studying the local magnetic features in DMS II-IV- V_2 and II-VI systems

• Link between local magnetic moments and bulk magnetism?

• How is magnetism distributed throughout sample?, ie:

(1) MnP impurity phase with clustering throughout?

(2) Distributed relatively uniformly throughout?

(3) Something else entirely?