Probing Local Features in Dilute Magnetic Semiconducting ZnGeP$_2$:Mn via μ+SR

P.W. Mengyan a, R.L. Lichti b, B.B. Baker a, Y.G. Celebi b, E. Catek b, K.T. Zawilski c, P.G. Schunemann c

a Texas Tech University, Lubbock, TX 79409-1051, USA
b Istanbul University, Beyazit, 34459 Istanbul, Turkey
c BAE Systems, Advanced Systems and Technology, Nashua, NH 03061-0868, USA

Project Focus
- DMS systems gaining importance as prospects in spin-based electronics
- Mechanism responsible for connecting local magnetic features to bulk magnetic properties – not yet understood in DMS systems

MuSR & μ^+ as Local Probe [1]
- Muon Spin Relaxation utilizes unique sensitivity of 100% spin polarized and positively charged muons to probe local magnetic and electronic environment
- Local B-field environment for μ: $B_{loc} = B_{ext} + dB_{loc} = B_{ext} + B_{rep} + B_{param} + dB_{loc}$
 - B_{ext} = Applied external field
 - B_{rep} = dipolar field
 - B_{param} = field from HI interaction
 - Short range magnetic interaction between μ and local electronic moments (ie. wavelength overlap)
 - Fermi contact interaction
 - Mag. interaction of μ’s pairs (spin for μ pairs in metals)
 - BRKKY - indirect exchange between μ and unpaired ϵ via conduction ϵ [dft materials]
 - Transferred hyperfine field (μ’s and ϵ’s wavelength overlap in insulators)
 - dB_{loc} = Contribution from fluctuation in neighboring magnetic moments → ϵ

Samples
- BAE Systems provided high quality, p-type ZnGeP$_2$:Mn
- All samples cut from the same single crystal boule from starting melt of 1.6% Mn
- AA → lowest Mn content; FF → Highest Mn content

The Experiment
- LF muon spin relaxation measurements performed using the EMU MuSR spectrometer on a surface muon channel at ISIS in Didcot, UK
- 4 different ZnGeP$_2$:Mn samples, varying Mn concentration
- Temperature scans at B_{ext}=1kG and B_{ext}=3.75kG
- B-field scans at various temperatures
- P(T) fit with two Lorentzian relaxing components and one non-relaxing component

Observed Features
- AFM Fluctuations (Δ_{AFM}): μ_{AFM} + μ \rightarrow Rlx rate, ϵ: Spin fluctuation rate
 - Additional measurements and modeling required to positively identify and further characterize short range correlations
- Fluctuations related to Spin Polaron (Δ_{SP}):
 - Additional measurements and modeling required to positively identify and further characterize fluctuations above 400K
 - CdGeAs$_2$:Mn (3%)
 - Various properties to ZnGeP$_2$:Mn, T $> 300K$
 - Spin precession results indicate SP above 300K

Future Work and Open Questions
- Overall goal: Further characterize magnetic properties and further the understanding of magnetism within DMS systems
- Additional analysis and modeling to achieve better separation of relaxation rates in regions that clearly have more than 2 relaxing components: ie. 300K to 500K region in the 1Kgs measurements of sample ‘AA’ (Fig 3)
- Higher field LF measurements to slow fluctuations enough to actually be able to measure and follow fluctuations through transition regions
- Muon spin precession measurements to characterize local magnetic fields and features; ie: 1) Identify μ^+ and μ^-like states
 - Check for well defined internal fields in FM regime
 - Investigate spin polaron formation and properties
 - Modeling of fluctuations in DMS systems for AFM, FM, SP
 - Work is start of the large scale project of studying the local magnetic features in DMS II-IV-V$_2$ and II-VI systems
 - Link between local magnetic moments and bulk magnetism
- How is magnetism distributed throughout sample?, ie:
 - MnP$_5$ impurity phase with clustering throughout?
 - Distributed relatively uniformly throughout?
 - Something else entirely?