

Magnetic Order and Muon Diffusion in VO₂

Rick Mengyan, Ph.D.

Research Associate Texas Tech University, Physics Lubbock, TX 79409-1051 USA

Collaboration:

R.L. Lichti, B.B. Baker, G. Jayarathna Texas Tech

Support:

Provided by the Welch Foundation (D-1321)

Experimental Facility:

ISIS: EMU TRIUMF: M15 - HiTime M20 - Helios

Basic Properties of VO₂

Transitions

- Reversible, Metal-Semiconducting at $T_{MST} = 340 \text{ K}$
- Structural: Rutile (T>T_{MST}) \rightarrow Monoclinic (M1, T<T_{MST})

	Metallic	Semiconducting
Band Gap	~0 eV	~1 eV
Optical Property	Reflective (Near IR)	Translucent
Conductivity	~ 10^{3} - $10^{4} (\Omega \text{cm})^{-1}$	~10 ⁻¹ -10 ⁻³ (Ωcm) ⁻¹

Triggered by:

• Temperature, E-field, Optical Excitation, Pressure

Potential Applications

• Microwave wave guides, smart-windows, reconfigurable and switchable antennae, ultra-fast optical filters

F. J. Morin, *Phys. Rev. Lett.* 3 (1959) 34; A. Cavalleri *et al*, *J. Phys Soc Japan* 75 (2006) 011004
B. J. Kim, et al *Appl Phys Lett* 90 (2007) 023515; M. M. Qazilbash, et al *Appl Phys Lett* 92 (2008) 241906
M. Imada, et al *Rev Mod Phys* 70 (1998) 1039; J. B. Goodenough, *J. Solid State Chem.* 3 (1971) 490

Structure: Metallic (T>T_{MST})

- •Tetragonal body-centered unit cell
- •V surrounded by octahedron of O atoms
- •V⁴⁺ has single e⁻ near Fermi level, occupies lowest 3*d* level
- •Asymmetry in crystal field splits 3*d* states with lowest orbital aligned along c-axis (→ higher conductivity)

unit cell

•V atoms pair along *c*-axis

•V–V dimerization \rightarrow doubled

- •One V per pair:
 - Shift in *a*-*b* plane
 - Closer to partner along c
- •Dimerization pairs e⁻ into singlet state, lead to
 - High resistivity
 - Non-zero bandgap

Structure: Semiconducting (T < T_{MST})

<u>Semiconducting</u> (Monoclinic)

Pink V1 paired with twisting Orange V2 paired without twisting

Background

H investigated as a dopant (~0 to 3.8% H)

- Nominal resistivity change; remains metallic down to 200 K (at 3.8% H)
- Effect has been observed but role H *actually* plays needs investigation [C. Wu, et al. J. Am. Chem. Soc. **133** (2011) 13798]

Dopants introduced, modify transition temperature

- W, Ti, Au: Lower transition temperature
- Cr, Al: Raise transition temperature
- Minimal effects on properties other than T_{MST}
- Actual role dopants play needs additional thorough investigation [ie: P. Kiri, et al. Adv Mat Lett 1 (2010) 86; Burkhardt, et al. Thin Solid Films 345 (1999) 229; A. Kaye, private communication, Texas Tech University (May 2013); C. Tang, et al. Phys Rev B 31 (1985) 1000]

Applications require exposure to H

- Long-term effects of H has not been studied
- Intentional H incorporation into VO_2 has major effect on transition \rightarrow Important to understand:
 - *How H may propagate into & Behavior in bulk VO*₂

Project Focus: VO₂ Compounds

- General study of Mu in VO₂
 ie: Unique contribution to H defect studies (early time)
 - Stability, Charge & Site dynamics, Energy Barriers, Diffusion Parameters, etc
- $\blacktriangleright \text{ Local environment of VO}_2 [vs VO_2:X]$
 - Role dopants play in modifying various phases and transition
 - Sensitive magnetic probe:
 Dimer $S_{net} = 0$ Magnetic moments introduced by disruption of V-V dimerization
- Local probe of yet to be understood transition
 - Mechanism (Mott-Hubbard vs Peierls)
 - Role Dopants play (c.f. Modification of environment, etc)

Experiment Details

ZF-MuSR

EMU (ISIS), HiTime and Helios (TRIUMF)

•Mu diffusion 8 K to 560 K

•Dynamics (field fluctuations or mu motion)

•Local magnetic environment

wTF-MuSR

- EMU, $B_{TF} = 100G$
- •ZF α calibration
- •Basic character info

<u>HTF-MuSR</u>

- •HiTime, B_{ext} up to 6.5 T
- •Identify & characterize sites
- •Investigate Mu⁰/Mu⁰-like states & formation
- •Characterize magnetism

Results and Discussion

- 1) Static between 100 K and ~300 K $\Delta = 0.171 \pm 0.004$ MHz
- 2) Detect change in mu site around MST $\Delta(T > T_{MST}) = 0.165 \pm 0.005 \text{ MHz}$

Results and Discussion

- 3) Dynamic at higher T, fit down to ~340 K
- 4) T < 35 K, trade off in Asy; $B_{loc,max} = 0.62 \pm 0.08 \text{ kG}$
- 5) Small fraction fits to same B_{loc} between 35 K & 100 K suggesting small fraction of high local order starting ~100 K

Results and Discussion

ZF-MuSR: VO2:W (97.6:2.4 at%)

P.W. Mengyan, et al. MuSR (2014)

- •Mu is sensitive to a feature near the MST and low temperature magnetism
- T < 35 K Magnetic phase B_{loc}=0.62 +/- 0.08 kG in VO₂
- 35 K to ~100 K localized magnetic features
- •Static between 100 K 300 K
- •Significant dynamics above 450K; possibly starting near 340K -- just above MST
- •5 at% Ti & 2.4 at % W show $T_c \sim 175$ K with $B_{loc} \sim 1.1$ kG

P.W. Mengyan, et al. MuSR (2014)

Thank you

P.W. Mengyan, et al. MuSR (2014)

- Basic properties of stoichiometric VO₂ well into each phase are well understood
- Driving mechanism of transition highly debated
 - (1) instability in Fermi surface caused by periodic lattice deformations (V-V pairing) which causes an energy gap to open (Peiels Mechanism)

OR

- (2) is it related to strong e⁻ -- e⁻ correlations that introduce an energy gap from the mutual repulsion (Mott-Hubbard mechanism)
- Understanding of this transition is required for better control and optimization of the properties for any application

Use $\mu^{\scriptscriptstyle +}$ as experimentally accessible analog to hydrogen

- Probe Mu⁰/H like states
- Mu/H diffusion

Mu as sensitive local probe to investigate local magnetic environment

- Through transition
- Well into each phase

Experimentally Accessible Analog to Hydrogen

	Muon	Proton
Mass (m_p)	$0.1126 \approx 1/9$	1
Spin	1/2	1/2
Gyro. Ratio, γ (s ⁻¹ T ⁻¹)	8.51607 x 10 ⁸ $\approx 3.2 \text{ x } \gamma_{\text{P}}$	2.67520 x 10 ⁸
Lifetime, $ au$ (µs)	2.19709	Stable
	Muonium	Hydrogen
Red. e ⁻ mass (m_e)	0.995187	0.999456
G. S. Radius (Å)	0.531736	0.529465
G. S. Energy (eV)	-13.5403	-13.5984

Muonium (Mu $\equiv \mu^+ e^-$)

FIG. 1. The hyperfine energy-level (Breit-Rabi) diagram for isotropic 1s-Mu as a function of the dimensionless magnetic field $x = B(g_{\mu}\mu_{\mu} - g_{e}\mu_{B})/(hA)$. A fictitious value for the quantity ω_{-}/ω_{+} has been used for clarity; its true value is 0.9904. The dashed lines are the high-field asymptotes for levels 2 and 4.

B.D. Patterson, Rev. Mod. Phys., 60, (1988) 1

P.W. Mengyan, et al. MuSR (2014)

$TF-\mu SR$

Brewer, http://musr.ca

B.D. Patterson, *Rev. Mod. Phys.*, **60**, (1988) 1 P.W. Mengyan, et al. MuSR (2014)

TF- μ SR: Sample signal from relaxing μ^+

Brawman http://musisra(2014)

LF-µSR

B applied || to μ^+ spin pol. See time evolution of P(t) along original direction

=> Change in Spin P(t) from:
1) local environment (nearby nuclear moments)
2) muonium motion
(e⁻ spin-flip w/ each site change, transferring back to μ⁺ contributing to Δ P(t))

R.F. Kiefl, R. Kadono, et al., Phys Rev Lett, 62 (1989) 7

Brewer, http://mwsmagyan, et al. MuSR (2014)

$ZF-\mu SR$

No net B applied See time evolution of P(t) in natural environment

=> Change in Spin P(t) from:
1) local environment (nearby nuclear moments)
2) μ⁺ motion

R.F. Kiefl, R. Kadono, et al., *Phys Rev Lett*, **62** (1989) 7 P.W. Mengyan, et al. MuSR (2014)

Brewer, http://musr.ca