
Magnetic Order and Muon Diffusion in VO2 

Rick Mengyan, Ph.D. 
Research Associate 

Texas Tech University, Physics 

Lubbock, TX 79409-1051 USA 

MuSR (2/Jun/2014) 

Support:  

Provided by the Welch Foundation (D-1321) 

 

Experimental Facility: 

ISIS: EMU 

TRIUMF: 

     M15 - HiTime 

     M20 - Helios 

Collaboration:  

R.L. Lichti, B.B. Baker, G. Jayarathna 

Texas Tech 

 
 



P.W. Mengyan, et al. MuSR (2014) 

Basic Properties of VO2 

Transitions 
• Reversible, Metal-Semiconducting at TMST = 340 K 

• Structural: Rutile (T>TMST)  Monoclinic (M1, T<TMST) 

 

 

 

Triggered by: 
• Temperature, E-field, Optical Excitation, Pressure 

Potential Applications 
• Microwave wave guides, smart-windows, reconfigurable and 

switchable antennae, ultra-fast optical filters 

Metallic Semiconducting 

Band Gap ~0 eV ~1 eV 

Optical Property Reflective (Near IR) Translucent 

Conductivity ~103-104 (cm)-1 ~10-1-10-3 (cm)-1 

F. J. Morin, Phys. Rev. Lett. 3 (1959) 34; A. Cavalleri et al, J. Phys Soc Japan 75 (2006) 011004 

B. J. Kim, et al Appl Phys Lett 90 (2007) 023515; M. M. Qazilbash, et al Appl Phys Lett 92 (2008) 241906  

M. Imada, et al Rev Mod Phys 70 (1998) 1039;  J. B. Goodenough, J. Solid State Chem. 3 (1971) 490  
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Structure: Metallic (T>TMST)  

Metallic (Rutile) 

 

Tetragonal body centered unit 

cell 

 

•Tetragonal body-centered 

unit cell 

•V surrounded by 

octahedron of O atoms 

•V4+ has single e− near Fermi 

level, occupies lowest 3d 

level 

•Asymmetry in crystal field 

splits 3d states with lowest 

orbital aligned along c-axis 

( higher conductivity) 
Images from: M. Nazarri, PhD Dissertation, Texas Tech, 2013; 
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Structure: Semiconducting (T < TMST) 

•V−V dimerization  doubled 

unit cell 

•V atoms pair along c-axis 

•One V per pair: 

• Shift in a−b plane  

• Closer to partner along c 

•Dimerization pairs e− into 

singlet state, lead to 

• High resistivity 

• Non-zero bandgap Semiconducting (Monoclinic) 

Pink V1 paired with twisting 
Orange V2 paired without 
twisting 

 Images from: M. Nazarri, PhD Dissertation, Texas Tech, 2013; 
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Background 

H investigated as a dopant (~0 to 3.8% H) 
• Nominal resistivity change; remains metallic down to 200 K (at 

3.8% H) 

• Effect has been observed but role H actually plays needs 
investigation 

Dopants introduced, modify transition temperature 
• W, Ti, Au: Lower transition temperature 

• Cr, Al: Raise transition temperature 

• Minimal effects on properties other than TMST 

• Actual role dopants play needs additional thorough investigation 
 [ie: P. Kiri, et al. Adv Mat Lett 1 (2010) 86; Burkhardt, et al. Thin Solid Films 345 (1999) 229; A. Kaye, 
private communication, Texas Tech University (May 2013); C. Tang, et al. Phys Rev B 31 (1985) 1000] 

Applications require exposure to H 
• Long-term effects of H has not been studied 

• Intentional H incorporation into VO2 has major effect on transition 
 Important to understand:  
• How H may propagate into & Behavior in bulk VO2  

[C. Wu, et al. J. Am. Chem. Soc. 133 (2011) 13798] 



P.W. Mengyan, et al. MuSR (2014) 

Project Focus: VO2 Compounds 

 General study of Mu in VO2  
ie: Unique contribution to H defect studies (early time) 

 Stability, Charge & Site dynamics, Energy Barriers, Diffusion 
Parameters, etc 

 Local environment of VO2 [vs VO2:X] 

 Role dopants play in modifying various phases and transition 

 Sensitive magnetic probe:  
Dimer Snet= 0  
Magnetic moments introduced by disruption of V-V dimerization 

 Local probe of yet to be understood transition 

 Mechanism (Mott-Hubbard vs Peierls) 

 Role Dopants play (c.f. Modification of environment, etc) 
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Experiment Details 

ZF-MuSR 

EMU (ISIS), HiTime and 

Helios (TRIUMF) 

•Mu diffusion 8 K to 560 K 

•Dynamics (field 

fluctuations or mu motion) 

•Local magnetic 

environment 

wTF-MuSR 

EMU, BTF = 100G 

•ZF α calibration 

•Basic character info 

HTF-MuSR 

•HiTime, Bext up to 6.5 T 

•Identify & characterize sites 

•Investigate Mu0/Mu0-like states 

& formation 

•Characterize magnetism 
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Results and Discussion 

10 100

0

2

4

6

8

10

12

14

16

18

20

MST
T=35K

 

 

 Exp

 sKT

 NonRlx

 Total

A
s
y
m

m
e

tr
y
 (

A
rb

 U
n

it
s
)

Temperature (K)

0 200 400 600

0.10

0.15

0.20

T=50K MST

Delta (MHz)

Temperature (K)

1) Static between 100 K and ~300 K  
Δ = 0.171 ± 0.004 MHz 

2) Detect change in mu site around MST 
Δ(T > TMST) =  0.165±0.005 MHz 
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Results and Discussion 
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3) Dynamic at higher T, fit down to ~340 K 

4) T < 35 K, trade off in Asy; Bloc,max = 0.62 ± 0.08 kG 

5) Small fraction fits to same Bloc between 35 K & 100 K  
suggesting small fraction of high local order starting ~100 K 
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Results and Discussion 

6) TF show relaxation features at 
340 and near 450 K 

7) Fit field – critical power law 
Bloc= Bloc,max = 0.62 ± 0.08 kG 
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ZF-MuSR: VO2:W (97.6:2.4 at%) 
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Summary 

•Mu is sensitive to a feature near the MST and low 
temperature magnetism 

• T < 35 K Magnetic phase Bloc=0.62 +/- 0.08 kG in 
VO2 

• 35 K to ~100 K localized magnetic features 

•Static between 100 K −  300 K 

•Significant dynamics above 450K;  
   possibly starting near 340K -- just above MST 

•5 at% Ti & 2.4 at % W show Tc ~ 175 K with  
   Bloc  1.1 kG 
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Thank You! 
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Thank you 
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Transition Mechanism Question 

 Basic properties of stoichiometric VO2 well into each phase 

are well understood 

 Driving mechanism of transition highly debated 

• (1) instability in Fermi surface caused by periodic lattice deformations 

(V-V pairing) which causes an energy gap to open (Peiels Mechanism) 

 

OR 

• (2) is it related to strong e− -- e− correlations that introduce an energy 

gap from the mutual repulsion (Mott-Hubbard mechanism) 

 Understanding of this transition is required for better control 

and optimization of the properties for any application 
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Goals with MuSR 

Use μ+ as experimentally accessible analog to 

hydrogen 

 Probe Mu0/H like states 

 Mu/H diffusion 

Mu as sensitive local probe to investigate local 

magnetic environment  

 Through transition 

 Well into each phase 
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Experimentally Accessible Analog to Hydrogen 

Muon Proton 

Mass (mp) 0.1126 ≈ 1/9 1 

Spin ½ ½ 

Gyro. Ratio,  

γ (s-1 T-1) 

8.51607 x 108 

≈3.2 x γP 

2.67520 x 108 

Lifetime, τ (μs) 2.19709 Stable 

Muonium Hydrogen 

Red. e- mass (me) 0.995187 0.999456 

G. S. Radius (Å) 0.531736 0.529465 

G. S. Energy (eV) -13.5403 -13.5984 

B.D. Patterson, Rev. Mod. Phys., 60, (1988) 1 
Brewer, http://musr.ca   
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TF-µSR 

Field applied ┴ to initial  spin 
polarization  
→ µ+ spin precession about 
applied field at: 

νμ+ = γμ x |B|   |γμ = 135.54MHz/T 

Mu0 = µ+ +  e-  
→ spin-orbit coupling 
→ affects local field of µ+ 
→ diff prec. Freq for:  
  |↑µ> + |↑e> & |↑µ> + |↓e>  

Brewer, http://musr.ca  B.D. Patterson, Rev. Mod. Phys., 60, (1988) 1 
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TF-µSR: Sample signal from relaxing µ+ 

Brewer, http://musr.ca  

     cosP t G t
 
   B

Envelope, G(t) 
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LF-μSR 

B applied || to µ+ spin pol. 
See time evolution of P(t) 
along original direction 

=> Change in Spin P(t) from: 
1) local environment (nearby 
nuclear moments) 
2)  muonium motion  
(e- spin-flip w/ each site 
change, transferring back to 
µ+ contributing to ∆ P(t) ) 

Brewer, http://musr.ca  
R.F. Kiefl, R. Kadono, et al., Phys Rev Lett, 62 (1989) 7 
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ZF-μSR 

No net B applied  
See time evolution of P(t) 
in natural environment 

=> Change in Spin P(t) 
from: 
1) local environment 
(nearby nuclear moments) 
2)  µ+ motion 

Brewer, http://musr.ca  
R.F. Kiefl, R. Kadono, et al., Phys Rev Lett, 62 (1989) 7 


