Magnetic Order and Muon Diffusion in VO$_2$

Rick Mengyan, Ph.D.

Research Associate
Texas Tech University, Physics
Lubbock, TX 79409-1051 USA

Collaboration:
R.L. Lichti, B.B. Baker, G. Jayarathna
Texas Tech

Support:
Provided by the Welch Foundation (D-1321)

Experimental Facility:
ISIS: EMU
TRIUMF:
M15 - HiTime
M20 - Helios

MuSR (2/Jun/2014)
Basic Properties of VO$_2$

Transitions

- Reversible, Metal-Semiconducting at $T_{MST} = 340$ K
- Structural: Rutile ($T>T_{MST}$) \rightarrow Monoclinic (M1, $T<T_{MST}$)

<table>
<thead>
<tr>
<th></th>
<th>Metallic</th>
<th>Semiconducting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band Gap</td>
<td>~ 0 eV</td>
<td>~ 1 eV</td>
</tr>
<tr>
<td>Optical Property</td>
<td>Reflective (Near IR)</td>
<td>Translucent</td>
</tr>
<tr>
<td>Conductivity</td>
<td>$\sim 10^3$-10^4 (Ωcm)$^{-1}$</td>
<td>$\sim 10^{-1}$-10^{-3} (Ωcm)$^{-1}$</td>
</tr>
</tbody>
</table>

Triggered by:

- Temperature, E-field, Optical Excitation, Pressure

Potential Applications

- Microwave wave guides, smart-windows, reconfigurable and switchable antennae, ultra-fast optical filters
Structure: Metallic \((T>T_{\text{MST}})\)

- Tetragonal body-centered unit cell
- \(V\) surrounded by octahedron of \(O\) atoms
- \(V^{4+}\) has single \(e^-\) near Fermi level, occupies lowest 3\(d\) level
- Asymmetry in crystal field splits 3\(d\) states with lowest orbital aligned along \(c\)-axis \((\rightarrow \text{higher conductivity})\)

Images from: M. Nazarri, PhD Dissertation, Texas Tech, 2013;
Structure: Semiconducting \((T < T_{\text{MST}})\)

• V–V dimerization → doubled unit cell

• V atoms pair along \(c\)-axis

• One V per pair:
 • Shift in \(a-b\) plane
 • Closer to partner along \(c\)

• Dimerization pairs \(e^-\) into singlet state, lead to
 • High resistivity
 • Non-zero bandgap

Images from: M. Nazarri, PhD Dissertation, Texas Tech, 2013;

Semiconducting (Monoclinic)
Pink V1 paired with twisting
Orange V2 paired without twisting
Background

H investigated as a dopant (~0 to 3.8% H)
- Nominal resistivity change; remains metallic down to 200 K (at 3.8% H)
- Effect has been observed but role H *actually* plays needs investigation

Dopants introduced, modify transition temperature
- W, Ti, Au: Lower transition temperature
- Cr, Al: Raise transition temperature
- **Minimal effects** on properties other than T_{MST}
- *Actual* role dopants play needs additional thorough investigation

Applications require exposure to H
- Long-term effects of H has not been studied
- Intentional H incorporation into VO$_2$ has major effect on transition
 → Important to understand:
 - *How H may propagate into & Behavior in bulk VO$_2$*
Project Focus: VO$_2$ Compounds

- General study of Mu in VO$_2$
 - ie: Unique contribution to H defect studies (early time)
 - Stability, Charge & Site dynamics, Energy Barriers, Diffusion Parameters, etc

- Local environment of VO$_2$ [vs VO$_2$:X]
 - Role dopants play in modifying various phases and transition
 - Sensitive magnetic probe:
 - Dimer $S_{net} = 0$
 - Magnetic moments introduced by disruption of V-V dimerization

- Local probe of yet to be understood transition
 - Mechanism (Mott-Hubbard vs Peierls)
 - Role Dopants play (c.f. Modification of environment, etc)
Experiment Details

ZF-MuSR
EMU (ISIS), HiTime and Helios (TRIUMF)
- Mu diffusion 8 K to 560 K
- Dynamics (field fluctuations or mu motion)
- Local magnetic environment

wTF-MuSR
EMU, $B_{TF} = 100\text{G}$
- ZF α calibration
- Basic character info

HTF-MuSR
HiTime, B_{ext} up to 6.5 T
- Identify & characterize sites
- Investigate μ^0/μ^0-like states & formation
- Characterize magnetism
Results and Discussion

1) Static between 100 K and ~300 K
 \[\Delta = 0.171 \pm 0.004 \text{ MHz} \]

2) Detect change in mu site around MST
 \[\Delta(T > T_{MST}) = 0.165 \pm 0.005 \text{ MHz} \]
3) Dynamic at higher T, fit down to ~340 K
4) T < 35 K, trade off in Asy; $B_{\text{loc, max}} = 0.62 \pm 0.08 \text{ kG}$
5) Small fraction fits to same B_{loc} between 35 K & 100 K suggesting small fraction of high local order starting ~100 K
6) TF show relaxation features at 340 and near 450 K

7) Fit field – critical power law
 $B_{\text{loc}, \text{max}} = 0.62 \pm 0.08$ kG
ZF-MuSR: VO$_2$:W (97.6:2.4 at%)
Summary

• Mu is sensitive to a feature near the MST and low temperature magnetism

• $T < 35 \text{ K}$ Magnetic phase $B_{\text{loc}}=0.62 \pm 0.08 \text{ kG}$ in VO_2

• 35 K to $\sim 100 \text{ K}$ localized magnetic features

• Static between $100 \text{ K} – 300 \text{ K}$

• Significant dynamics above 450K; possibly starting near 340K -- just above MST

• 5 at% Ti & 2.4 at % W show $T_c \sim 175 \text{ K}$ with $B_{\text{loc}} \sim 1.1 \text{ kG}$
Thank You!
Thank you
Transition Mechanism Question

- Basic properties of stoichiometric VO$_2$ well into each phase are well understood
- Driving mechanism of transition highly debated
 - (1) instability in Fermi surface caused by periodic lattice deformations (V-V pairing) which causes an energy gap to open (Peiels Mechanism)
 - OR
 - (2) is it related to strong e$^-$ -- e$^-$ correlations that introduce an energy gap from the mutual repulsion (Mott-Hubbard mechanism)
- Understanding of this transition is required for better control and optimization of the properties for any application
Goals with MuSR

Use μ^+ as experimentally accessible analog to hydrogen

- Probe μ^0/H like states
- μ/H diffusion

Mu as sensitive local probe to investigate local magnetic environment

- Through transition
- Well into each phase
Experimentally Accessible Analog to Hydrogen

<table>
<thead>
<tr>
<th></th>
<th>Muon</th>
<th>Proton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (m_p)</td>
<td>0.1126 \approx 1/9</td>
<td>1</td>
</tr>
<tr>
<td>Spin</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>Gyro. Ratio, γ (s$^{-1}$ T$^{-1}$)</td>
<td>8.51607 x 10^8 \approx 3.2 x γ_p</td>
<td>2.67520 x 10^8</td>
</tr>
<tr>
<td>Lifetime, τ ((\mu)s)</td>
<td>2.19709</td>
<td>Stable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Muonium</th>
<th>Hydrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red. e$^-$ mass (m_e)</td>
<td>0.995187</td>
<td>0.999456</td>
</tr>
<tr>
<td>G. S. Radius (Å)</td>
<td>0.531736</td>
<td>0.529465</td>
</tr>
<tr>
<td>G. S. Energy (eV)</td>
<td>-13.5403</td>
<td>-13.5984</td>
</tr>
</tbody>
</table>

FIG. 1. The hyperfine energy-level (Breit-Rabi) diagram for isotropic 1σ-Mu as a function of the dimensionless magnetic field $x = B (g_\mu \mu_\mu - g_\mu \mu_\mu) / (h \lambda)$. A fictitious value for the quantity ω_- / ω_+ has been used for clarity; its true value is 0.9904. The dashed lines are the high-field asymptotes for levels 2 and 4.

Brewer, http://musr.ca →

Field applied perpendicular to initial spin polarization
→ μ^+ spin precession about applied field at:

$$\nu_{\mu^+} = \gamma_\mu \times |B| \ \ \ |\gamma_\mu = 135.54\text{MHz/T}$$

$\text{Mu}^0 = \mu^+ + \text{e}^-$
→ spin-orbit coupling
→ affects local field of μ^+
→ different precession frequencies for:

$$|\uparrow_\mu> + |\uparrow_\text{e}> \ \ & \ |\uparrow_\mu> + |\downarrow_\text{e}>$$

Brewer, http://musr.ca

B.D. Patterson, Rev. Mod. Phys., 60, (1988) 1
TF-µSR: Sample signal from relaxing μ^+

$$P(t) = G(t) \cos \left(\gamma_{\mu^+} \left| B_{\mu^+} \right| + \delta \right)$$
B applied || to μ⁺ spin pol. See time evolution of P(t) along original direction

=> Change in Spin P(t) from:
1) local environment (nearby nuclear moments)
2) muonium motion (e⁻ spin-flip w/ each site change, transferring back to μ⁺ contributing to Δ P(t))

Brewer, http://musr.ca
ZF-μSR

No net B applied
See time evolution of $P(t)$ in natural environment

\Rightarrow Change in Spin $P(t)$ from:
1) local environment (nearby nuclear moments)
2) μ^+ motion

Brewer, http://musr.ca