

Muonium Transitions in Ge-rich SiGe Alloys

Rick Mengyan, M.Sc.

Graduate Research Assistant Texas Tech University, Physics Lubbock, TX 79409-1051 USA

Collaboration:

R.L. Lichti, B.B. Baker, H.N. Bani-Salameh (Texas Tech)Y.G. Celebi (Istanbul University, Turkey)B.R. Carroll (Arkansas State)I. Yonenaga (Tohoku University, Japan)

Support:

Provided by the Welch Foundation (D-1321)

Experimental Facility:

M20 Beamline at TRIUMF (Vancouver, BC, Canada)

Mu defect in bulk Czochralski-grown SiGe alloys

Measure and investigate compositional trends in:

- Donor & Acceptor energies
- Paramagnetic Mu hyperfine frequencies
- Charge-state cycles
- Site change-cycles

LF-µSR

Brewer, http://musr.ca

Experimentally Accessible Analog to Hydrogen

	Muon	Proton
Mass (m_p)	$0.1126 \approx 1/9$	1
Spin	1/2	1/2
Gyro. Ratio,	8.51607 x 10 ⁸	2.67520 x 10 ⁸
γ (s ⁻¹ T ⁻¹)	$\approx 3.2 \text{ x } \gamma_{\text{P}}$	
Lifetime, τ (µs)	2.19709	Stable
	Muonium	Hydrogen
Red. e ⁻ mass (m_e)	0.995187	0.999456
G. S. Radius (Å)	0.531736	0.529465
G. S. Energy (eV)	-13.5403	-13.5984

 $\mu^+ \sim p^+$

$$m_{\mu} \approx 1/9 \ m_{p} \ m_{\mu} \approx 207 m_{e}; \ S = 1/2$$

$$Mu^0 = \mu^+ + e^-$$

Mu⁰~light isotope H (see table)

i.e.: Early history of H impurities

P.W. Mengyan, et al. ICDS-26 (2011)

Muonium (Mu $\equiv \mu^+ e^-$)

Brewer, http://musr.ca → B.D. Patterson, *Rev. Mod. Phys.*, **60**, (1988) 1

Single crystal, Cz-grown, Si_{1-x}Ge_x: x=0.94,0.91,0.81 (Yonenaga)

Slightly p-type (not intentionally doped) 10¹⁴-10¹⁵ cm⁻³

 Mu^{+}_{BC} is equilibrium state

On implantation, μ^+ captures e-, forms highly mobile Mu⁰_T (~75% initial state in pure Ge)

LF- μ SR on Si₉Ge₉₁: T=27K with B_{LF}=70mT

LF- μ SR on Si₉Ge₉₁: Results

Si₉Ge₉₁: Slowly Relaxing Piece

*P.J.C. King, et al, *Physica B* **401-402** (2007) 617-620

P.W. Mengyan, et al. ICDS-26 (2011)

Si₉Ge₉₁: Moderate Relaxing Piece

P.W. Mengyan, et al. ICDS-26 (2011)

Si₉Ge₉₁: Fast Relaxing Piece

*R.L. Lichti, et al., *Phys Rev B*. **60** (1999) 1734-1745

Si₉Ge₉₁: Cycles

*R.L. Lichti, et al., Phys Rev B. 60 (1999) 1734-1745

P.W. Mengyan, et al. ICDS-26 (2011)

Si₉Ge₉₁: Cycles

 $\frac{120-200K \text{ (Fast)}}{Mu^{0}_{T} \leftrightarrow Mu^{0}_{BC} \text{ cycle}}$ Ending by hole capture $(Mu^{0}_{T} + h^{+} \rightarrow Mu^{+}_{BC})$ h⁺ Ionization $\rightarrow Mu^{-}$

Continues until h^+ capture dominates and drives: $Mu^0_T \rightarrow Mu^+_{BC}$ as long lived final state

Si₉Ge₉₁: Cycles

<u>160–300K (Moderate)</u> $Mu_{BC}^{0} \rightarrow Mu_{T}^{0}$ Process Ending by hole capture $(Mu_{T}^{0} + h^{+} \rightarrow Mu_{BC}^{+})$ h^+ Ionization $\rightarrow Mu^-$ **Continues until BC** ionization takes: $Mu_{T}^{0} \rightarrow Mu_{BC}^{+}$ as long lived final state

 Si_9Ge_{91} vs. $Si_{19}Ge_{81}$

Si₆Ge₉₄

Future Work

Overall goal includes determining how cyclic processes evolve w.r.t. alloy content throughout full range

Additional data fitting & theoretical modeling
→ ensure accurate assignments for the processes
→ extend appropriately to the other Ge-rich compositions

Continue to develop comprehensive description of the Mu/H defect characteristics

	Si ₁₉ Ge ₈₁	Si ₉ Ge ₉₁	Si ₆ Ge ₉₄
${\rm Mu^0}_{\rm T} \rightarrow {\rm Mu^-}_{\rm T}$	4 ± 3 meV	5.5 ± 2 meV	V.B. Resonant
${\rm Mu^0}_{\rm T} \rightarrow {\rm Mu^0}_{\rm BC}$	106 ± 28 meV	97.1 ± 10 meV	71 ± 14 meV
$Mu_{T}^{0} \leftrightarrow Mu_{BC}^{0}$	$247 \pm 12 \text{ meV}$	$239.7 \pm 1 \text{ meV}$	Unable to Resolve
$\begin{array}{l} Mu^{0}_{BC} \rightarrow Mu^{0}_{T} \\ (\rightarrow Mu^{-}_{T} + h^{+}) \end{array}$	138 ± 37 meV	$136.5 \pm 1.5 \text{ meV}$	$137 \pm 15 \text{ meV}$
$Mu^0_{\ T} + h^+ \longrightarrow Mu^+_{\ BC}$	$325 \pm 84 \text{ meV}^*$	188 ± 31 meV	133 ± 23 meV
$Mu^{0}_{BC} \rightarrow Mu^{+}_{BC} + e^{-}$	*	$237 \pm 51 \text{ meV}$	$210 \pm 45 \text{ meV}$

Red: 'New' information

* Not enough data to determine with *reasonable* accuracy

Thank you

Experimentally Accessible Analog to Hydrogen

	Muon	Proton
Mass (m_p)	$0.1126 \approx 1/9$	1
Spin	1/2	1⁄2
Gyro. Ratio, γ (s ⁻¹ T ⁻¹)	8.51607 x 10 ⁸ $\approx 3.2 \text{ x } \gamma_{\text{P}}$	2.67520 x 10 ⁸
Lifetime, $ au$ (µs)	2.19709	Stable
	Muonium	Hydrogen
Red. e ⁻ mass (m_e)	0.995187	0.999456
G. S. Radius (Å)	0.531736	0.529465
G. S. Energy (eV)	-13.5403	-13.5984

Muonium (Mu $\equiv \mu^+ e^-$)

FIG. 1. The hyperfine energy-level (Breit-Rabi) diagram for isotropic 1s-Mu as a function of the dimensionless magnetic field $x = B(g_{\mu}\mu_{\mu} - g_{e}\mu_{B})/(hA)$. A fictitious value for the quantity ω_{-}/ω_{+} has been used for clarity; its true value is 0.9904. The dashed lines are the high-field asymptotes for levels 2 and 4.

B.D. Patterson, Rev. Mod. Phys., 60, (1988) 1

Brewer, http://musr.ca \rightarrow

TF-µSR

Brewer, http://musr.ca

B.D. Patterson, *Rev. Mod. Phys.*, **60**, (1988) 1 P.W. Mengyan, et al. ICDS-26 (2011)

TF- μ SR: Sample signal from relaxing μ^+

Brawman http://muspsa26 (2011)

LF-µSR

B applied || to μ^+ spin pol. See time evolution of P(t) along original direction

=> Change in Spin P(t) from:
1) local environment (nearby nuclear moments)
2) muonium motion
(e⁻ spin-flip w/ each site change, transferring back to μ⁺ contributing to Δ P(t))

R.F. Kiefl, R. Kadono, et al., Phys Rev Lett, 62 (1989) 7

Brewer, http://pnwsmaagyan, et al. ICDS-26 (2011)

RF-µSR

Start with LF setup Oscillating field applied to drive transitions between Zeeman level(s)

Picture: J. Lord, <u>RF-µSR and Pulsed Techniques</u>, http://www.isis.stfc.ac.uk/groups/muons/muon-training-school

Brewer, http://mwstMeagyan, et al. ICDS-26 (2011)

$ZF-\mu SR$

No net B applied See time evolution of P(t) in natural environment

=> Change in Spin P(t) from:
1) local environment (nearby nuclear moments)
2) μ⁺ motion

R.F. Kiefl, R. Kadono, et al., *Phys Rev Lett*, **62** (1989) 7 P.W. Mengyan, et al. ICDS-26 (2011)

Brewer, http://musr.ca

Mu T and BC Sites in Diamond Structure

 Si_9Ge_{91} vs $Si_{19}Ge_{81}$

Comparison of Si_9Ge_{91} to $Si_{19}Ge_{81}$ Mod & Fast: peak shift with composition

Using LF-MuSR we have observed:

- Hole ionization & $Mu_{T}^{0} \rightarrow Mu_{BC}^{0}$ Transition Both associated with shallow acceptor (base to ~50K)
- Two cyclic transitions involving: $Mu_{T}^{0} \leftrightarrow Mu_{BC}^{0}$ Followed by hole ionization: $Mu_{T}^{0} \rightarrow Mu_{T}^{-}$ Continues until h⁺ capture drives final state to stable Mu_{BC}^{+} or terminated by BC ionization causing $Mu_{BC}^{0} \rightarrow Mu_{BC}^{+}$