Solutions

Physics 1308-H01 Exam #2, Fall, 2010

Instructions: Do real good. Show your work for all problems. Partial credit will be assigned for things that make sense. $g=9.80 \text{ m/s}^2$, $G=6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$.

Short questions: (7.5 points each, drop the low one)

1. What is the difference between centripetal force and centrifugal force?

Centripetal Bree is the real force pointing towards the center. Centrifugal force is a fictitious force "observed" in the accelerated frame of reference, and acts outwards.

2. A 4.0 kg block, initially moving at 3.0 m/s, slides a distance of 7.5 m on a flat surface before stopping. The coefficient of sliding friction between the block and the surface is (Use Newton's second law)

a) 0.60 (b) 0.062 c) 0.10 d) 0.32
$$a = -\frac{1}{2} = -0.60 \text{ M/s}^2$$

3. An object is released from rest and allowed to fall through air, subject to a drag force which is proportional to its velocity. Describe how the velocity and acceleration of the object change as it falls.

Initally, a = -g and V=0. As Vincreases, the drag force increases, decreasing a until it reaches 0 and the velocity becomes constant at its terminal value.

- 4. A comet on a very elliptical orbit moves much faster when it is near the sun than when it is far away from the sun. This behavior is described by
- a) Kepler's first law (law of ellipses)
- Kepler's second law (law of equal areas)
- c) Kepler's third law (harmonic law)
- 5. An object at the center of the earth has a weight which, when compared to the weight it would have at the surface,
- a) is much greater b) is somewhat less c) is somewhat greater d) s zero e) is the same

6. At what distance from the center of the earth will the acceleration of gravity be 0.80g?

Fig = NCA =
$$\frac{GMME}{V^2}$$
 SD $A = \frac{GMR}{V^2}$ but $g = \frac{GME}{RE^2}$
SO $\frac{2}{9} \times 0.80 = \frac{RE^2}{F^2}$, $r = \sqrt{\frac{1}{0.80}}RE = 1.12 RE$
or if assume earth is uniform, $0.80 = \frac{1}{RE}$ $V = 0.80 RE$

7. The centripetal force does no work on an object moving in uniform circular motion. Discuss why this is so based on the general formula for calculating work, and the work-energy theorem.