
Some thoughts about homogeneous dual-readout calorimeters

R. Wigmans

Beijing, May 9, 2010

The physics of hadronic shower development

A hadronic shower consists of two components

- Important characteristics for hadron calorimetry:
 - Large, non-Gaussian fluctuations in energy sharing em/non-em
 - Large, non-Gaussian fluctuations in "invisible" energy losses

About the contribution of relativistic hadrons to the signals

D. Groom:
$$\langle f_{em} \rangle = 1 - \left[\frac{E}{E_0}\right]^{(k-1)}$$

with E_0 = average shower energy needed for production of 1 secondary π varies from 0.7 GeV (Fe) - 1.3 GeV (Pb)

 $k \sim 0.8$ related to average multiplicity

Example: High-energy hadron on Pb, 100 GeV non-em energy deposit \rightarrow 100/1.3 = 77 secondairy/tertiary shower pions, kaons

- mips in Pb lose 218 MeV per λ_{int} through ionization \rightarrow 77 mips lose in total 16.8 GeV
- π ,K may lose a bit more, since λ_{int} defined for protons
- On the other hand, many soft π 's cause Δ resonance production, with cross sections much larger than the asymptotic one used for calculating λ_{int} (e.g. $\pi^+ n \longrightarrow p\pi^o$)

 \rightarrow ionization loss π ,K may account for ~20% of non-em E

Naive expectations for hadron calorimeters

Average composition of non-em shower component:

- Pions, kaons,.... 20% (relativistic)- Protons 25%

- Neutrons 15%

- Invisible 40%

Exp. value

Cherenkov calorimeter: e/h = 1/0.2 ~ 5

Crystal calorimeter: $e/h = 1/(0.2 + f_1 \cdot 0.25)$ with $f_1 < 1 > 2$

LAr calorimeter: $e/h = \frac{e}{mip}/(0.2 + f_1.0.25)$, $0.6 < \frac{e}{mip} < 1$ 1.3-1.8*

Plastic-scint. calorimeter $e/h = \frac{e}{mip}/(0.2 + f_1 \cdot 0.25 + f_2 \cdot 0.15)$ with $f_2 > 1 < 1.5$

Efficient neutron detection is very important for hadronic energy resolution because kinetic energy neutrons correlated with invisible energy

Compare intrinsic limits SPACAL, ZEUS, D0

^{*} Except for uranium absorbers (fission energy)

Pros & Cons of Compensating Calorimeters

Pros

- Same *energy scale* for electrons, hadrons and jets. No ifs, ands or buts.
- *Calibrate* with electrons and you are done.
- Excellent hadronic *energy resolution* (SPACAL: $30\%/\sqrt{E}$).
- *Linearity*, Gaussian *response function* and all that good stuff.
- Compensation fully understood.

 We know how to build these things, even though GEANT doesn't

Cons

- Small sampling fraction (2.4% in Pb/plastic)
 - \rightarrow em energy resolution limited (SPACAL: 13%/ \sqrt{E} , ZEUS: 18%/ \sqrt{E})
- Compensation relies on detecting neutrons
 - → Large *integration volume*
 - \rightarrow Long *integration time* (~50 ns)

The DREAM project was started with the goal to IMPROVE these results!

i.e.

- Better em energy resolution
- Smaller integration volume
- Faster charge collection
- All this while maintaining (or further improving) the excellent hadronic performance

The Dual-Readout Approach to Hadron Calorimetry

Elements needed to improve the excellent ZEUS/SPACAL performance:

- 1) Eliminate/reduce effects of fluctuations in "invisible energy"
 - → calorimeter needs to be efficient in detecting the "nuclear" fraction of the non-em shower component
- 2) Efficient neutron detection is an excellent tool in that respect but one should not depend on detecting all interactions by all neutrons (integration cone, time!)
- 3) Reduce the contribution of sampling fluctuations to energy resolution (THE limiting factor in SPACAL/ZEUS)
- 4) Eliminate the effects of fluctuations in the em shower fraction, f_{em} in a way that does NOT prevent 2), 3)

→ Dual-Readout Calorimetry

Advantages / disadvantages HHCAL concept

Advantages:

- No sampling fluctuations
- Some calibration problems characteristic for sampling calorimeters don't play a role

Disadvantages:

- No sensitivity to neutrons, and thus to invisible energy fluctuations
- Light attenuation
- Readout
- COST

(My personal) Conclusions

Advances in hadron calorimetry have always been the result of experimental R&D.

Don't take MC simulations too seriously. Their predictive value has been unimpressive

If you can find the money, go for it. It can't be worse than PFA

I am personally not betting any money on this effort