Set-up

- 100 BGO xtals readout by 16 PMTs equipped with UG11 filters;
- Waveforms acquired by 16 DRS channels with 2.5 Gs/s
- The beam was centered on column 2;
- In front of the matrix there was the interaction target to produce pseudo-jets;
- Downstream the IT there was a scintillator readout by a PMT to measure the multiplicity of the pseudo-jet;
- DREAM was sitting downstream of the matrix;
- The results obtained are compared with the ones published on NIMA 610(2009)488–501.

Analisys method

In order to evaluate the Cherenkov (C) and the scintillation (S) component of the total (Q) light yield all the waveforms were off-line analyzed;

- The waveform is numerically integrated in two gates;
- S and C is evaluated from the two integrals as

S = B;

 $C = A - 0.35 \times B;$

Davide Pinci – INFN Roma – Italy

Resolution for 100 GeV electrons

With the described method the energy resolution obtained by using Q, S and C.

Resolution as a function of E

The behavior of the energy resolution as a function of the electron energy was studied;

Response linearity

The linearity of the BGO matrix response was tested over the hole range (30 – 150 GeV);

No evident saturation was found. A linearity within \pm 3% was measured.

Pseudo-jets

Pseudo-jets were created by making a 180 GeV pion beam interact with a plexi-glass target upstream of the BGO Matrix;

The multiplicity after the target was evaluated by means of a scintillator pad placed between the interaction target and the BGO Matrix;

Energy in the BGO

Pseudo-jets release a lot of energy in the BGO matrix;

Almost 30% of pseudo-jets release more than half of its energy in the BGO matrix.

Need for a compensate measurement

C/S in case of pseudo-jets is quite larger than for electrons because of the fluctuations of the e.m. fraction within the showers.

The ratio C/S

The ratio C/S is the quantity that allows to evaluate the e.m. fraction of the shower;

For electrons it shouldn't vary from event to event;

Behavior of C/S within the shower

Because of the directionality of the Cherenkov photons, the ratio C/S can also be used to evaluate the anisotropy of the electrons within the shower, i.e. to evaluate the depth of the shower;

Davide Pinci – INFN Roma – Italy