The new RD52 (DREAM )>I< fiber calorimeter

Richard Wigmans
(TTU)

Calorimetry in High Energy Physics
(CALOR 2012)

Santa Fe, New Mexico, June 2012

* DREAM (RD52) Collaboration:
Cagliari, Cosenza, Pavia, Pisa, Roma, lowa State, TTU



About RD52

RD52 1s a generic detector R&D project
not linked to any experiment

Goal:
Investigate + eliminate the factors that prevent us [rom measuring
hadrons and jets with similar precision as electrons, photons

Method:

Simultaneous measurement of scintillation light (dE/dx) and Cerenkov
light produced in shower development makes it possible to measure the
em shower fraction event by event. The effects of fluctuations in this
fraction can thus be eliminated (Dual-REAdout Method)

Relevance:

This method provides the same advantages as intrinsically compensating
calorimeters (e/h =1) WITHOUT the limitations (sampling fraction,
integration time, volume)
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The oricinal DREAM calorimeter




Experimental proof of dual-readout principle
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Dual-readout method can also be used in crystal calorimeters

Separate C and S components through:
- spectral characteristics

- lime Structure

See talk
G. Gaudio
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Figure 3: Unraveling of the signals from a Mo-doped PbWO, crystal into Cerenkov and scintillation components.
The experimental setup is shown in diagram a. The two sides of the crystal were equipped with a UV filter (side
R) and a yellow filter (side L), respectively. The signals from 50 GeV electrons traversing the crystal are shown
in diagram b, and the angular dependence of the ratio of these two signals is shown in diagram ¢ [6].



High-resolution hadron calorimetry also requires efficient
detection of the “nuclear” shower component

Time structure of the DREAM signals: the neutron tail
(anti-correlated with f,,,)
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Figure 4: The average time structure of the Cerenkov and scintillation signals recorded for 200 GeV “jets” in the
fiber calorimeter (a). Scatter plot of the fraction of the scintillation light contained in the (20 ns) exponentional tail
versus the Cerenkov/scintillation signal ratio measured in these events () [9].



Outline:

e How to achieve excellent hadronic energy resolution?

® The new dual-readout fiber calorimeter (SuperDREAM)

- beam tests of prototype modules
- final design choices

® Plans for 2012 and beyond



How to achieve excellent hadronic energy resolution?

o Energy resolution is determined by FLUCTUATIONS

- The fact that 65% of jet energy is carried by charged particles (PFA)
1S IRRELEVANT.

e In most hadron calorimeters, fluctuations in  f,,, dominate

- Eliminate by: Compensation (e/i = 1)
Measuring /., event by event (DREAM)

* Fluctuations in VISIBLE ENERGY (nuclear binding energy loss, AB)

- Non-em signal 1s dominated by “nuclear” component: p,n

- Correlation between “nuclear signal” and AB determines
ultimate limit on hadronic energy resolution (ZEUS vs DO)

- Crystals disfavored in this respect (see D. Groom'’s talk)

o STOCHASTIC fluctuations (sampling, light yield ...)

- Limiting factor for electromagnetic energy resolution



The new dual-readout fiber calorimeter

o Fluctuations mj;m eliminated

Fluctuations in effects of AB minimized (estimate 15%!/ VE)

e Improve on stochastic fluctuations
- Sampling fluctuations
- Cerenkov light vield

Both contributed ~35%/\/E to DREAM results

* Test effect of improvements with electron showers,
since the em resolution is limited by stochastic fluctuations



The first SuperDREAM module tested at CERN

Pb absorber
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Comparison of polystyrene/ PMMA clear fibers
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Numerical aperture:
PS 0.72, PMMA 0.50

However, self absorption in PS
(Rayleigh scattering), hatt ~ 3 m

Tested two lead modules, one
with PS, one with PMMA
Readout EXACTLY the same

Scintillator: no change
Cerenkov: x 2!

C light yield was measured for
PS module with LED: 32 p.e./GeV

—> twice as high for PMMA



Electromagnetic energy resolution in one (Pb) Super DREAM module
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Further improvements: o Combine different modules — better containment for beam in tower centers
o Aluminizing upstream end of (C) fibers — more light
o Light mixers—seliminate position dependence of response

e Reduce noise contribution of readout electronics

Expect 10%/\/E by combining signals from two types of fibers



Absorber choice: Cu vs Pb

e Detector mass: Aoy = 15.1 cm, Mp, = 170 cm

Mass 12 : Cu/Pb = 0.35

o e/mip —»> Cerenkov light yield Cu/Pb ~ 1.4
(Showers inefficiently sampled in calorimeters with high-Z absorber)

e Non-linearity at low energy in calorimeters with high-Z absorber

Important for jet detection
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The first copper module

Clear fibers illuminared |

Scintilla.rmg ﬁbers




The first copper module




First hadrons in SuperDREAM (1 Pb module + n-shield)




Calibration of neutron shield (muon beam)




First results on pion detection in the new fiber calorimeter

Scintillator signal (raw data) Leakage vs scintillator signals
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A crucial feature: No longitudinal segmentation

e Advantages:

- Compact construction
- No intercalibration of sections needed
- Calibrate with electrons and you are done

® Possible disadvantages:

- Pointing for neutral particles

- Electron ID
- Dealing with pile-up

However, a [ine lateral granularity can do wonders
In addition:

® Time structure of the signals can provide crucial depth information



lime structure signals

Fiber calorimeter: Can be used for
- precision measurement of start time signals (effects Aatt)

- neutron tail of S signals
- electron/gamma ID (starting time + width of the signals)

(Crystals: needed to separate C and S signals)

We use a data acquisition system based on the DRS C/’lip*
(Domino Ring Sampler) developed at PSI.

An array of 1024 switching capacitors samples the input signal,
at a frequency of 5 GHz (DRS-1V).

Read out by pipeline 12-bit ADC.

* See NIM A518 (2004) 407



Depth of the light production

and the starting point of the PMT signals
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Measurement of the depth of the light production in module

80 GeV celectrons

using the DRS timing

180 GeV pions
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Check that DRS time measures shower depth
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Plans for 2012

We hope to finish construction of a matrix of 12 - 16 fiber modiiles
(2-4Cu,8-10PD, + 2 existing PD)

Complete the construction of the neutron shield (40 modiiles)

lest this matrix + n-shield in November
Finish our crystal program (polarization measurements, July)

Further develop MC tools needed for this project



Production of Pb based Super DREAM modules




Plans for > 2013

Finish construction of the 5-ton calorimeter

Tests of jull calorimeter with/without em Xtal matrix

Address issues associated with implementation in experiment

- Compactness: investigate W option
- Readout: test SiPM readout of fiber modiule
- Projectivity

Strongly dependent on available funds and manpower



Conclusions

e A fine-sampling Cu-fiber dual-readout calorimeter offers the best and,
in my opinion the only, possibility to measure jets with energy
resolutions at the 1% level

® The RD52 Collaboration hopes to prove this statement
experimentally, which is the only way to prove anything concerning
hadron calorimetry

e Come and join us, if you are interested in contributing to quantum
leaps in detector performance



Backup slides



Particle ID does NOT require segmentation!

e/Tt separation using time structure signals

500
n 20 GeV
Electrons —80
2 a
— Z
o~ 400 | =
\ -
1y
160
= &
- o
o 300 [ Mt
= g
) o
= _ {0 3
= a00 | Pions ~
g -
/f’ -
= [ P —
I = 20
il | w me
mi'n o 1 ] | | ! | 1 | ] ’-IIJI-’L;I]’”L]””ﬂH] In | 1 0
: 27

2 % 16 18 20
FWEFM (ns)

['1G. 7.33. The distribution of the full width at one-fifth maximum (FWIM) for 80 GeV elec-
tron and pion signals in SPACAL [Aco 91al.

24 26 28



DREAM: How to determine [, and E?
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em shower fraction

01.2 . 0?4 : 01.6 ; 0;8 ] %
» Entries 25121
: Mean 0.7806
— RMS 0.07532
HTEES e EENE RN SN N ant L1
4 05 06 07 08 09 1 1.1 1.2

Q/S signal ratio

900

800

700

600

500

400

300

200

100

0

O—l
p —

lI]IIIIIII[IIIlIIl[|IlII[l]l]]ll]lllllllllFIl[I

I]IJ[IlIIJ[II

f cm

Entries

Mean

RMS

25121

0.5532

0.1212

| M A

0.4

0.6

0.8

1

Electromagnetic fraction




DREAM: Effect of event selection based on f,,,
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DREAM: Signal dependence on f.,
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DREAM: Eftect of corrections (200 GeV "jets")
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Effects of Q/S corrections on

hadronic signal linearity and  jet resolution
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On high-resolution hadron calorimetry
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On the energy measurement of hadron jets
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Abstract

The elementary constituents of hadronic matter (quarks, anti-quarks, gluons) manifest themselves experimentally in
the form of jets of particles. We investigate the precision with which the energy of these fragmenting objects can be
measured. The relative importance of the instrumental measurement precision and of the jet algorithm is assessed. We
also evaluate the ““energy flow” method, in which the information from a charged-particle tracker is combined with that

from a calorimeter in order to improve the jet energy resolution.
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From Conclusions:

Both our simulations and the experimental data
show that the EFM does offer a beneficial effect.
However, this effect should not be exaggerated.
The mmprovement in the energy resolution is
typically 30%. Poor calorimeter systems benefit
more than good calorimeter systems, and a strong
magnetic field also helps.

cf CMS vs ATLAS !!

No experimental evidence to the contrary!!

bosons and decreases at higher energies. Claims
that much better results may be achieved for
highly granular calorimeter systems, in which the
showers generated by the individual jet fragments
may be recognized and separated from each other
are unsubstantiated. We have shown that for most
of the showers in practical detectors, the overlap
between the shower profiles rather than the
detector granularity is the factor that limits the
benefits of this method.





