Estimate of neutrons event-by-event in DREAM

Pavia, CALOROS, 24-28 May 2008
John Hauptman, for the DREAM Collaboration

The DREAM module was designed as a proof-of-principle
module to test the idea of dual-readout as a means to suppress
the large EM fluctuations 1n hadronic showers. It worked.

The next largest are the binding energy loss fluctuations, and
these can be estimated by measuring the MeV neutrons
liberated in shower development.

We have modified the DREAM module, measured these
neutrons, and estimated the effect of these fluctuations on
hadronic energy measurement.

Improvements 1n these techniques are planned.




Dual'readOUt DREAM: Structure
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e Some characteristics of the DREAM detector
Depth 200 cm (10.0 Ay )
Effective radius 16.2 em (0.81 A, 8.0 par)
Mass instrumented volume 1030 kg
Number of fibers 35910, diameter 0.8 mm, total length ~ 90 km
Hexagonal towers (19), each read out by 2 PMTs
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DREAM beam test summer ‘07
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Neutron signal (a.u) Neutron fraction

fn = En (EM energy units) / 200 GeV




4000
Cerenkov
The neutron fraction 1s
anti-correlated with the
Cerenkov signal - as
expected
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Linearly correcting each Cerenkov distribution
in an fn bin to tn=0.07 (arbitrary, middle value)
results 1n the “fn corrected” distribution
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(1) fn-corrected Cerenkov resolution
improves with shower energy ... AND ...

(2) Its dependence leaves no “constant term”



Total Cerenkov signal (arb. units)

For fixed EM fractions, the
neutron fraction varies by ~15%
or more; these are the binding
energy loss fluctuations on top
of the EM fraction fluctuations.

Neutron fraction in scintillator signal, f,
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For fixed EM fraction ~0.55 and
0.045<tn<0.065, the resolution
in Cerenkov signal 1s 4.7%. For
a tighter fn, 0.050<fn<0.055, the
resolution 1s 4.4%.

For fixed EM fraction, the resolution
in the Cerenkov signal worsens as
the neutron fraction grows larger,
and 1ts fluctuations grow larger.

0.12;

0
-

Mean 3065
Sigma 143

o/mean 4.7%
X*/ndf 17.1/17

200 GeV “jets”

OJJi
()AL= (S = (040

-
[—
o
N
-

O :
-
O

NN
-

O .
o
3

-
S
o0
Number of events per bin
b
(e

o
=
S
V
S

Bt T
©

N—
=~

=
—
~

P
)
S
o
>,
o
<

Q

b)

; O
-
o)

1 1 1 1 I 1 1 1 1 l 1 1 1 l 1 1 1

1000 2000 3000 4000
Neutron fraction scintillator signal Cerenkov signal (arb. units)

Note bene: leakage fluctuations in DREAM are ~4%.
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Summary and plans for neutrons in DREAM

This 1s a “first cut” analysis.

The time history of every channel with the Domino Ring
Sampler (DRS) will yield the best data we can expect from
the DREAM module; this analysis will be repeated and
further analyses done with new data next July-August.

It 1s not yet clear what hadronic energy resolution we can
achieve, but the “ultimate” resolution is about 15%/VE .
Will it be 15% ... 20% ... 25% ... ?

It will be a pleasure to be limited 1n a collider experiment
by jet-finding, reconstruction, jet energy scale, and other
confusions and systematics ... but not the hadronic
calorimeter energy resolution!




