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GOAL /| MESSAGE of this talk

The assessment of the performance of calorimeters is very different
Jrom that of other types of particle detectors.

Important performance characteristics:

o Vertex detector:  Position resolution —

Can all be
o Tracking system: Two-track separation — determined
Momentum resolution __% instr aightforward
Tri and unambiguous
® . . .
rigger counter: Time resolution _ Wways
o Wire chambers:  Detection efficiency ~ —

Depends on how
measurements are
done and by whom

Calorimeter: Energy resolution —






"Dummy" compensation
NIM A390 (1997) 63, NIM A400 (1997) 267
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Energy resolution is determined
by fluctuations, NOT by mean
values. Therefore, multiplying
the signals from one calorimeter
section with a constant factor,
has NO effects on the resolution.

Sy | Extreme example:

Calorimeter with dead material
upstream to equalize the response
to electrons and pions.

FIG. 4.59. The e/ signal ratio at 80 GeV (a) and the energy resolution (b) of a quartz-fiber
calorimeter preceded by dead material (iron), as a function of the thickness of this material
[Fer 97]. The energy resolution is given for 80 GeV electrons and pions, and for multi-particle

“jets” generated by 375 GeV pions in an upstream target.



About calorimeter energy resolution

Energy resolution is determined by FLUCTUATIONS

Excluding certain fluctuations (either on purpose or unconscionably)
therefore leads to a resolution that seems better than in reality

A comment for those who want to “optimize” energy resolution

e Energy resolution = precision with which the energy of a particle
or jet showering in the calorimeter can be determined

e A narrow signal distribution may ONLY be interpreted as a good energy
resolution if it is centered around the correct energy value

o Therefore, signal linearity is an integral aspect of good energy resolution






The first “<°U/LAr calorimeter

- 23811/ Ar

The rest: Fe/lLAr
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A biased event sample

particle type | beam energy [GeV] | all pions | selected pions (< 20%)
T 10 440208 84706
T 15 127554 24997
T 18 52880 10492
T 20 342798 67093
T 25 201243 39631
T 35 272987 54126
T 40 472345 93301
T 45 325092 63547
T 50 304023 59076
T 60 647090 121588
T 80 741440 139248
nt 30 155210 30884
Tt 40 307177 60595
Tt 50 159414 30843
Tt 60 449273 86947
Tt 80 272441 52442

Table 1. Summary of the data samples. The total number of pions is the number of events classified as
pions, after rejection of empty, noisy and double particle events, and the application of muon rejection and
particle identification cuts. The number of selected pions are the events with an identified shower start in
the first five layers of the AHCAL, which are used in the present analysis. For most energies, several run
periods at different temperatures are combined to maximise statistics.






Sometimes it is very tempting
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Fig. 4. Schematic overview of the arrangement of the auxiliary detectors that were used to identify the individual beam particles (not to scale). See text for details.
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Fig. 5. The calorimeter signal distributions for the pure muon, pion and electron event samples used in the analyses. See text for details.



(Mis) Calibration

The pitfalls of longitudinal segmentation



Calibration of longitudinally segmented devices

- Imagine a Cherenkov calorimeter, e.g. lead glass

- High-energy electrons develop showers in this

- On average, 10 p.e. per GeV deposited energy
100 GeV e gives a signal of 1000 p .e., Ff:’h
20 GeV e gives a signal of 200 p.e., etc. r o

- Shower particles < 0.3 MeV give NO C light

- The relative contribution of such particles increases with depth

- If this detector is cut into 3 parts, the relationship between deposited energy and resulting

signal is then, e.g.
[:15 p.el/GeV II:10 p.e/GeV II: 5 p.e/GeV

These constants have been derived for 100 GeV e, which deposit, on average, 30/40/30%
in these 3 parts, and thus give, on average, a signal of 1000 p.e., as before

- However, a low-energy shower deposits most of its energy in part I. Based on these

calibration constants, its energy is OVERESTIMATED

- And for an em shower starting in section Il (e.g. Y from nm°decay), the energy is

systematically UNDERESTIMATED

— = Non-linearity + energy dependence on starting point shower



Calibration of calorimeter systems
e Determine relationship between signal (pC, p.e.) and energy (GeV)

e Fundamental problem in sampling calorimeters:
Different shower components are sampled differently
Shower composition changes as shower develops
—> Sampling fraction changes with the shower age (also E dependent)

How to intercalibrate the sections
of a longitudinally segmented calorimeter?



Sampling fraction of 'ys, generated at random points inside a calorimeter
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The sampling fraction changes as shower develops™
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Calibration misery of longitudinally segmented devices

Example: AMS (em showers!)
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A widely used technique for calibrating segmented devices
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Calibrating longitudinally segmented calorimeters
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FIG. 6.2. The fractional width o/F of the signal distributions for electrons of different energies,
as a function of the value of the intercalibration constant B /A of the HELIOS calorimeter system.
The dashed line corresponds to the intercalibration constant derived from muon measurements [Ake 87].



Results of miscalibration: Non-linearity
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Figure 12: Signal nonlinearity for electrons resulting from miscalibration of a longitu-
dinally segmented calorimeter. The total calorimeter response (average signal per unit of
energy) is given for 3 different values of the ratio of the calibration constants for the 2
longitudinal segments, B/ A. See text for details.



Results of miscalibration: Mass dependence
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Figure 14: Signal distributions for s and various hadrons decaying into all-y final
states. All particles have the same nominal energy and the detector, which has an in-
trinsic resolution of 0.5% for em showers of this energy, was calibrated with ¢lectrons
using B/A = 0.8. See text for details.



A comment for those who want to “optimize” energy resolution

Energy resolution = precision with which the energy of a particle
or jet showering in the calorimeter can be determined

A narrow signal distribution may ONLY be interpreted as a good energy
resolution if it is centered around the correct energy value

Therefore, signal linearity is an integral aspect of good energy resolution



Intercalibrating sections by minimizing total signal width

GIVES WRONG RESULTS!
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Figure 11: The fractional width, o/ F, of the signal distribution for 80 GeV 7~ in the
SPACAL detector as a function of the weighting factor applied to signals from the central
calorimeter tower into which the pion beam was steered. The calorimeter towers were

calibrated with high-energy electrons [7].

From: NIM A485 (2002) 385.



Hadronic showers

® [arge fraction of energy is deposited through em showers (1°)
® Starting point of the em component(s) fluctuates wildly

® Non-em shower energy primarily deposited by
- spallation protons
- evaporation neutrons

These particles are also sampled very differently than mip s

® [n addition, the calorimeter response to the em/non-em components
is not the same (e/h # 1, non-compensation)

=) Calibration problems even worse than for em calorimeters



Aspects of the calibration of
Calorimeter systems at colliders

o Minimizing total width of signal distributions B/A < 1

- non-linearity, systematic mismeasurement of energy, ...

» Each section its own particles (calibrate hadronic section with pions
that penetrate the em section without starting a shower)  B/A > 1

o Use the em scale for all sections B/A =1

General comment:

Energy resolution is determined by event-to-event fluctuations

Therefore, application of overall weighting factors to signals from different
detector sections has NO effect on energy resolution



Another method used in practice

Calibrate each section with its own particles

A B

e Problem: How about hadrons that start shower in section A?

- Energy systematically mismeasured
depending on e/h values of sections A,B

- Reconstructed energy depends on starting point of shower



Wrong B/A:
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Different depth segments calibrated in the same way (B/A = 1)

In this way, one may avoid some of the problems encountered jor B/A # 1
(non-linearity, reconstructed energy depends on starting point shower,...)

However:
- Be careful interpreting the results (e.g. leakage estimates AMS)

- Starting point dependence remains if different sections have different e/l



Use the em scale for all sections (B/A = 1)
Hadronic response and signal linearity in CMS

CMS pays a price for its focus on em energy resolution
ECAL has e/h =2.4,while HCAL has e/h=1.3

—> Response depends strongly on starting point shower

hadrons
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Single particles and jets in the CMS calorimeters
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Calorimeter response does not only depend on starting
point of the shower, but also on the particle type



So what to do?

» Determine the calibration constants of the longitudinal segments
on the basis of

Monte Carlo simulations!!!



ATLAS: The longitudinally segmented (LAr) ECAL
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ATLAS: Energy reconstruction ECAL
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A final word about longitudinal segmentation

If your calorimeter is not longitudinally segmented,
vou are NOT tempted to intercalibrate the segments wrongly

My pet pief: There is nothing that one can achieve with
longitudinal segmentation that one cannot achieve (better)
with other means






Quoting the energy resolution in terms of “x%/\/E”

The energy resolution is typically affected by several other factors
than those determining the stochastic term.

The contributions of these other factors typically have a different energy
dependence, and may even dominate in certain energy regions

An almost universal misunderstanding in this context is that e/h # 1
(non-compensation) contributes a constant term to the resolution

The correct energy dependence is as follows: X[ E ]—0.28

with the degree of non-compensation O < X < 1 0.7

Quoting the energy resolution (for comparitive purposes) in terms of
x%/\E is a misleading oversimplification of the reality









Difference only noticeable for E > 1000 GeV
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LHC experiments: Performance of the forward calorimeters
ATLAS is clearly better than CMS
CMS HF: Energy resolution function Op  d
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But let’s not pretend that performance is better than it is
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SPACAL: Position dependent response to electrons
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The “Texas tower effect”

Caused by placing readout elements that produce HUGE signals for one
particular type of shower particle in the path of the developing shower

| — - |
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1) Calorimeters with gas (wire chamber) readout, f, .., ~ 107,
If gas contains H, neutron scattering in gas may transfer 1 MeV to p.
This will look like an energy deposit of 100 GeV (CDF).

2) CMS ECAL (lead tungstate crystals read out by Avalanche Photo Detectors
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Signal saturation

Example:

e One SPACAL tower contains about 90%
of electron shower.

* During calibration (100 GeV e), the HV of one tower is set too high.

* We measure a REALLY good resolution (0.5%) for that tower.
This is because the signal in that tower saturates (always the same
value). The resolution comes from fluctuations in the 10% that is
distributed over the other towers.

o This saturation will disappear when lower energy electrons are
sent into this tower. Saturation thus manifests itself in the form
of signal non-linearity. The response is suppressed for higher energies.

* The energy resolution will also become much larger when the saturation
is lifted, because fluctuations in the signal from the hit tower (90% of
total signal) now also contribute.
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The extremely narrow electromagnetic shower profile

Lateral shower profile
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Response — (Semi) - Digital HCALs
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Suggesting that linearity is irrelevant

e [fthe non-linearity is caused by signal saturation,
the measured energy resolution is meaningless
(much better than justified)

e [fthe non-linearity is caused by miscalibration,

the measured energy depends on the type of particle that causes
the signal (cf.vy, n°, K™ 37°)

® [fthe non-linearity is caused by non-compensation,

then the signal can be converted to energy by using the proper
calibration constants



Response — (Semi) - Digital HCALs
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In a calorimeter, showers initiated by electrons and vys
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ATLAS: Energy reconstruction (for electrons) in ECAL
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In a high-Z compensating calorimeter, jet resolution is
not as good as single-it resolution
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Signal non-linearities at low energy (< 5 GeV)
due to non-showering hadrons
Many jet fragments fall in this category

A copper or iron based calorimeter would be much better in that respect



From pions to jets
Example:
Correct procedure: Jet response function CMS

e A jetis a collection of particles, mainly 160

pions and photons. If one has a data base 1401 ’r'
of beam particles of different energies - Wi
hitting the calorimeter system at - i"
different impact points, one could
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* Testing claims of how well PFA algorithms are capable of avoiding double
counting should be straightforward in this way as well. For each profile, one
could apply one’s favorite PFA algorithm to eliminate the contributions from
charged hadrons and determine the remaining calorimeter energy, which could
then be added to the (precisely known) energy of the charged hadrons to give
the jet energy.

Wrong procedure:

Use a black box Monte Carlo simulation that is known to be wrong in reproducing
crucial features such as the width of hadronic showers to obtain a jet response
Junction. Then use phony statistics to derive from this a jet resolution value.






Redefining “energy resolution”

If the signal distributions have tails, some people resort to
phony statistics in order to make the results look better

than they are

Example : NIM A611 (2009) 25

resolution over-emphasises the importance of these tails. In this
paper, performance is quoted in terms of rmsgg, which is defined
as the rms in the smallest range of reconstructed energy which
contains 90% of the events.

Even for a perfectly Gaussian distribution, rms g << Gfj,

perform the first systematic study of the potential of high granularity PFlow calorimetry. For simulated

events in the ILD detector concept, a jet energy resolution of oz /E < 3.8% is achieved for 40-400 GeV

jets. This result, which demonstrates that high granularity PFlow calorimetry can meet the challenging

The correct way:
If the distribution is Gaussian, then resolution is given by Og;

Otherwise, Oyms should be quoted as the resolution



(Emons~Ebeam)’ Emeas (%)

Redefining “response linearity”

The fact that a straight line can be drawn through the data points
does NOT mean that the calorimeter is linear
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Fit to experimental data (electrons):
Emean= ﬁ-Eb,gam - 360 MeV

Then, they define:
Emeas = Emean + 360 MeV

and conclude:

7. Conclusion

The response to normally incident electrons of the _
electromagnetic calorimeter was measured for energies between
6 45 GeV, using the data recorded in 2006 at CERN
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e e et = ol =

In reality, they measured a non-linearity
of ~3% over less than one decade in energy!










Pion signals in crystal ECAL + scintillator HCAL
100 GeV 7t~
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Some good news:

Situation for jets is better than for single particles
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Mean 82.26
RMS 6.396

TBO06 reconstructed jet (100GeV)
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Jet signal reconstructed on the
basis of the measured signals
Jrom its constituents

100 GeV jet: o/mean =7.8%
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Fluctuations in energy sharing
between ECAL/HCAL smaller for jets!



Using test beam data to determine the jet energy scale (CMS)
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Figure 5.18: Average calorimeter response to jets after the test beam particles were
corrected. Almost linear response at 1 confirms the validity of our jet reconstruction
based on test beam data.

Average calorimeter response to jets
after correcting the response of individual
Jet fragments for e/h effects
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Figure 5.20: The jet response is lower than charged pion response, because a jet
consists of mostly low energy (< 10 GeV) particles and the low calorimeter response
to these particles reduces the jet response with respect to charged pions.

Correction factor (1/response) as a
Junction of E for single pions and jets

From: PhD thesis K.Z. Gumus (TTU, 2008)



How do we know calibration is correct?

o Check with a “known” energy deposit

em calorimeter: Use electrons whose momenta are measured with tracker

hadronic section: Use hadrons whose momenta are measured with tracker
and which penetrate em section before starting shower

Problem: Using these calibration constants, energy of hadrons that start
shower in the em section will be systematically mismeasured

o The ultimate check is the correct reconstruction of physics objects
/Z —» efe” J —» ete” Y —=>» ete”
(91.2 GeV/c2) (3.10 GeV/c2) (9.46 GeV/c?)
(cf. the “self-calibrating” DO calorimeter)



How do we know calibration is correct? (2)

e For hadron calorimeter, there is no such “easy” calibration object

Since UA2 (1983), no experiment has observed W,Z in jet/jet invariant mass
distributions.
Argument: QCD background is too high.

o However, how about 7. —> b b ?
CDF, DO, ATLAS, CMS should have samples comparable in size to Z —»e*e”
Why isn't the Z seen in invariant mass distributions of b jets?
QCD background should be very small.

e QOther options: W from t-decay, W/Z from W+jet-jet events
Need several fb! to get meaningful event sample

* General problem with calibration of “jet energy scale” in calorimeters with e/h + 1.
Any method is only valid for a specific class of events, and gives wrong
results for other types of events
(e.g. jets with leading t°vs. jets with leading )





