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Decisions about the future require a good
understanding of the past

Outline:
e A brief history (50 vears) of calorimetry

* The future: A dream or a nightmare?

e Conclusions



A brief history of calorimetry
(used as a particle detection technique)

o [n the 1960s, particle physics started to make the transition from
the bubble chamber era to experiments based on electronic counters

® The detectors basically formed a magnetic spectrometer,
in which all charged particles produced in reactions on a fixed target

were analyzed: — nromentum Jfrom effects Lorentz force

Energy (mass) from time-of-flight or dE/dx

® For the detection of the neutral reaction products (overwhelmingly 'ys
from m°decay), one used scintillating crystals, developed in the 1950s
Jor nuclear spectroscopy, and called these “shower counters”™

® Using properly chosen materials (high Z!), even very-high-energy s
can be fully absorbed in detectors of limited length (<30 cm),
and be measured with spectacularly good energy resolution
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The importance of good energy resolution

I [

Scintillator
Nal(Tl)

0

High-purity Ge
lw | e 2
L !m
orsad
| | “‘*JU“J}“"\J..JJ I
500 1000 1500

Energy (keV)




A brief history of calorimetry (2)

e To save money, large calorimeters were built as sampling devices
(functions of absorption and signal generation carried out by different

materials).

® For active material, one originally used plastic scintillator plates
or wire chambers. Later, liquid argon or krypton, scintillating fibers

and semiconductor pads were introduced as active material
Typically, lead was used as absorber material (short radiation length)

e Some of these devices also achieved sub-1% energy resolutions for ey
Examples: NA48 (Pb-LKr), KLOE (Pb-fibers)

e Other particles also generated signals in these calorimeters.
However, the energy resolution was considerably worse
Even at the highest energies, resolutions better than 10% were hard fo
achieve. Worse, the detectors were non-linear, and the response also
depended on the type of particle (pion, proton)
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A brief history of calorimetry (2)

e To save money, large calorimeters were built as sampling devices
(functions of absorption and signal generation carried out by different
materials).

o For active material, one originally used plastic scintillator plates
or wire chambers. Later, liquid argon or krypton, scintillating fibers
and semiconductor pads were introduced as active material
Typically, lead was used as absorber material (short radiation length)

e Some of these devices also achieved sub-1% energy resolutions for e,y
Examples: NA4S (Pb-LKr), KLOE (Pb-fibers)

e Other particles also generated signals in these calorimeters.
However, the energy resolution was considerably worse
Even at the highest energies, resolutions better than 10% were hard to

achieve. Worse, the detectors were non-linear, and the response also
depended on the type of particle (pion, proton)



Energy resolution of a homogeneous hadron calorimeter
(60 tonnes of liquid scintillator)

From: NIM 125 (1975) 447
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A brief history of calorimetry (3)

o Inthe 1970s, calorimeters took on new tasks.

—> High-energy neutrino experiments: larget + trigger (total energy)
—> Collider experiments (ISR, PETRA): Energy flow (missing E, jets)
—> General: Particle ID (e,Y,L,V)

o Cualorimeters turned out to be extremely suitable for such tasks.
This is the main reason why they have become the central component of
any detector system at accelerator based HEP experiments

e However, detailed understanding of the hadronic calorimeter performance
was still lacking. Monte Carlo simulations provided little or no guidance.

® [n many experiments, good hadronic performance was not considered a top
priority. Detector choice was therefore determined by other considerations
(money, radiation hardness, personal hobbyism .....)



The WA neutrino experiment (1976)

(integrated target, calorimeter, tracker)
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Example of energy flow information
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Particle identification with calorimeters

Using shower profile
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A brief history of calorimetry (3)

o /nthe 19/0s, calorimeters took on new tasks.

High-energy neutrino experiments: larget + trigger (total energy)
Collider experiments (ISR, PETRA): Energy flow (missing E, jets)
General: Particle ID (e,y,L,V)

o Calorimeters turned out to be extremely suitable for such tasks.
This is the main reason why they have become the central component of
any detector system at accelerator based HEP experiments

o However, detailed understanding of the hadronic calorimeter performance
was still lacking. Monte Carlo simulations provided little or no guidance.

® [n many experiments, good hadronic performance was not considered a top
priority. Detector choice was therefore determined by other considerations
(money, radiation hardness, personal hobbyism .....)



A brief history of calorimetry (4)

Since ~1985, separate efforts have been undertaken to understand (and thus
improve!) the performance of hadron calorimeters, both experimentally and
at the Monte Carlo level

What has been learned in this respect is almost entirely due to experimental
efforts

MC simulations are still not in a state in which they can be considered a
useful tool for design and optimization of detectors

As a result, the development of calorimeters for the LHC experiments has
proceeded without meaningful guidance from MC simulations.
And the experiments pay the price for that.



The physics of hadronic shower development

® A hadronic shower consists of two components
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The calorimeter response to the two shower components
is NOT the same

(mainly because of nuclear breakup energy losses in non-n° component)
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(Fluctuations in) the electromagnetic shower fraction, f,,,

i.e. the fraction of the shower energy deposited by T°s
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Fluctuations in the em shower component ( f,,. )

o Why are these important ?

- Electromagnetic calorimeter response # non-em response (¢/h # 1)
- Event-to-event fluctuations are large and non-Gaussian
- <fom> depends on shower energy and age

o Cause of all common problems in hadron calorimeters

- Energy scale different from electrons, in energy-dependent way
- Hadronic non-linearity

- Non-Gaussian response function

- Poor energy resolution

- Calibration of the sections of a longitudinally segmented detector



The Uranium remedy!!

® Around 1985, the idea came up (W. Willis) to use depleted uranium ( 8y
as absorber material. Nuclear fission in the non-em shower component
would (by chance, just) COMPENSATE for the losses in nuclear binding energy.

o Calorimeters with e/h = I would from now on be known as “compensating”
Willis’ group built the first such calorimeter for an ISR experiment
( 238U_/p[astic scintillator) : Linear response, good energy resolution

® However, other attempts were less successful.
One uranium calorimeter even gave e/h ~ 0.8 (“overcompensating”)

Others were approximately compensating, but gave poor resolution (e.g. L3)

e Around 1985, there was a lot of confusion about the possible merits
(or absence thereof) of uranium absorber

® [.3 data gave a clue to the solution



Hadronic signal (non-)linearity: Dependence on e/h
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Compensation and energy resolution in L3 hadron calorimeter
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The Uranium remedy!!

: . . . 238
® Around 1985, the idea came up (W. Willis) to use depleted uranium (“~"°U)
as absorber material. Nuclear fission in the non-em shower component
would (by chance, just) COMPENSATE jor the losses in nuclear binding energy.

e Calorimeters with e/h = 1 would from now on be known as “compensating”
Willis” group built the first such calorimeter for an ISR experiment
( 236U/plastic scintillator) : Linear response, good energy resolution

® However, other attempts were less successful.
One uranium calorimeter even gave e/h ~ 0.8 (“overcompensating )
Others were approximately compensating, but gave poor resolution (e¢.g. L3)

e Around 1985, there was a lot of confusion about the possible merits
(or absence thereof) of uranium absorber

e [.3 data gave a clue to the solution



The compensation puzzle solved!

The e/h value is not determined by the absorber, but by active medium
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The secrets of compensation unraveled

® Calorimeter signal is the sum of all the signals from the shower particles
produced in the absorption process.

e Crucial shower particles are sampled in very different ways, depending on
the calorimeter structure. Compared to a mip,

-electrons and ys are sampled less efficiently when using high-7 absorber
-neutrons can be sampled much more efficiently with H-rich active material

e By choosing the optimal sampling fraction, these factors can be tuned to
to achieve e/h = 1

® Lfficient neutron detection also reduces the effects of fluctuations in
nuclear binding energy loss on the energy resolution (correlated!)

® The use of uranium absorber is neither necessary nor sufficient
In fact, the best energy resolutions have been obtained with Pb absorber



Calorimetric effects of efficient neutron sampling
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The special role of neutrons in calorimetry

In calorimeters with hydrogenous active material,
neutrons lose a major fraction of their kinetic energy
through elastic n-p scattering in that material.

The recoil protons may contribute to the signals.

Therefore, the neutron component may be very efficiently sampled
in such calorimeters. The sampling fraction may be much larger than
for the other shower particles .

This is the key element of compensation (e/h = 1).

In addition, the total kinetic energy of the neutrons is strongly
correlated with the lost nuclear binding energy.

Therefore, efficient neutron detection is crucial for reducing the
contribution of fluctuations in “invisible energy’to the resolution.



High resolution hadron calorimetry had become a reality
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Monte Carlo simulations of hadronic shower development

® Reliable simulations are of crucial importance for detector development,
optimization and understanding

e Simulations based on incorrect/incomplete input of the important
~ physics processes cannot be expected to produce meaningful results
(regardless of your computing power!)

® [n shower development, most of the energy is deposited in the very last stages.
In multi-GeV electromagnetic showers, a large fraction of the energy is
deposited by electrons with energies in the keV range.
This has important consequences for em calorimetry

In multi-GeV hadronic showers, most of the energy is deposit in the
nuclear stage: MeV-type nuclear reactions, nuclear deexcitation, transport of p.n

Therefore, it is crucial to simulate that part correctly.



A brief history of calorimetry (4)

Since ~1985, separate efforts have been undertaken to understand (and thus
improve!) the performance of hadron calorimeters, both experimentally ad
at the Monte Carlo level

What has been learned in this respect is almost entirely due to experimental
efforts

MC simulations are still not in a state in which they can be considered a

useful tool for design and optimization of detectors
Crucial experimental data sets (ZEUS-Pb, ZEUS-noncorrelation, U-plastic)

have never been (even approximately) reproduced by GEANT and
(therefore) tend to be ignored by GEANT developers

As a result, the development of calorimeters for the LHC experiments has
proceeded without meaningful guidance from MC simulations.
And the experiments pay the price for that.



Consequences for LHC calorimeters
Hadronic response and signal linearity (CMS)

CMS pays a price for its focus on em energy resolution
ECAL has e/h = 2.4, while HCAL has e/h=1.3

—> Response depends strongly on starting point shower
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Pion signals in crystal ECAL + scintillator HCAL
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One area where RELIABLE MC is badly needed: Calibration

The enormous complications that arise when calibrating
a longitudinally segmented (sampling) calorimeter

The problem:

o In the absorption process, the energy is deposited by

- electrons, positrons, photons (em)
- electrons, positrons, photons, pions, protons, neutrons (had)

e In a given sampling calorimeter, the sampling fraction is typically
very different for these different particles
Also, the composition of the shower changes as the shower develops

o As a result, the relationship between measured signal and deposited
energy (calibration constant) varies with depth, and is especially for
hadrons in a given detector segment different for each event






The future of calorimetry

e Hadronic calorimetry will become increasingly important, especially if
a machine such as CLIC will ever be built. Jet spectroscopy will replace
particle spectroscopy, e.g. to distinguish final-state W/Z bosons

e Different approaches are followed to develop calorimeter systems that
are up to that task:

- Compensating calorimeters
Proven technology, current holders of all performance records

- Dual-readout calorimeters
Try to improve on the performance of compensating calorimeters

by eliminating the weak points of the latter
Many experimental successes have been achieved, goals within reach

- Systems based on Particle Flow Analysis
Combine the information from a tracking system and a fine-grained
calorimeter



Compensating calorimetry

® Reasons for poor hadronic performance of non-compensating
calorimeters understood

® Compensation mechanisms fully understood

238 . . o
U absorber (fission —> compensation for invisible energy loss)

Is neither needed nor sufficient

Experimentally demonstrated with Pb/scintillator calorimeters
(ZEUS, SPACAL)



Hadlronic signal distributions in a compensating calorimeter

from: NIM A308 (1991) 481
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SPACAL 1989




Hadron calorimetry in practice
Energy resolution in a compensating calorimeter
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Pros & Cons of Compensating Calorimeters

Pros
® Same energy scale for electrons, hadrons and jets. No ifs, ands or buts.

® Calibrate with electrons and you are done.
® Excellent hadronic energy resolution (SPACAL: 30%/\VE).

® Linearity, Gaussian response function and all that good stuff.

® Compensation fully understood.
We know how to build these things, even though GEANT doesn t

Cons

® Small sampling fraction (2.4% in Pb/plastic)
— > em energy resolution limited (SPACAL: 13%/\E, ZEUS: 18%/VE)

® Compensation relies on detecting neutrons
— Large integration volume
—> Long integration time (~50 ns)

e Jet resolution not as good as for single hadrons in Pb,U calorimeters



What is the problem with the jet energy resolution?
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e/mip

What is the problem with the jet energy resolution?
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Elements needed to improve the excellent ZEUS/SPACAL performance:

1) Reduce the contribution of sampling fluctuations to energy resolution
(THE limiting factor in SPACAL/ZEUS)

2) Use lower-Z absorber material
to eliminate / reduce the jet problems

3) Maintain advantages of compensation
(eliminate / reduce effects of fluctuations in f.,, and invisible energy)

—>» Dual-Readout Calorimetry






An attractive option for improving the quality of hadron calorimetry:

Use Cerenkov light!! Why?

em component (1°)

Hadron showers < non-em component (mainly soft p)

Calorimeter response to these components not the same (¢//2 # 1)

Cerenkov light almost exclusively produced by em component
(~80% of non-em energy deposited by non-relativistic particles)

= DREAM (Dual REAdout Method) principle:
Measure f,,, event by event by comparing C and dE/dx signals



DREAM: Structure

—2.5 mm-
~— 4 mm——-

e Some characteristics of the DREAM detector

- Depth 200 cm (10.0 Ajyt)

Effective radius 16.2 cm (0.81 Aint, 8.0 pyr)

Mass instrumented volume 1030 kg

Number of fibers 35910, diameter 0.8 mm, total length &~ 90 km

Hexagonal towers (19), each read out by 2 PMTs



DREAM: How to determine f, and E?
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DREAM: Effect of event selection based on f,,,

TT TII | ]]l 111 ]I T ITI Ill LI

Entries 78198
Mean 66.1
RMS 12.4

100 GeV 1t~
C signal

L L I 1 1 L I 1 1

IITIIIIIIIIIIIIIIIIIIITIIITIIII]ITIIIII

035 < f(\:m <04U

0.60< lem <0.65

0.80< fem <0.85

E i s .
N .
: E | 1
. | i \ ’
- [ | ']
L}
| 1 . '
8 | \ ] '
|
|
!

40 60 80 100

P Il NSO (AP

120 140

Cerenkov signal (GeV)

From:
NIM A537 (2005) 537



Average Cerenkov signal (GeV)
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DREAM: Eftect of corrections (200 GeV "jets")
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Effects of /S corrections on

hadronic signal linearity and  jet resolution
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Figure 9: The scintillator response of the DREAM calorimeter to single pions (a) and the energy resolution for
“jets” (D), before and after the dual-readout correction procedures were applied to the signals [5].



CONCLUSIONS
from tests of fiber prototype

e DREAM offers a powerful technique to 7772p70ve hadronic calorimeter performance :
- Correct hadronic energy reconstruction, in an instrument calibrated with electrons!
- Linearity for hadrons and jets
- Gaussian response functions
- Energy resolution scales with 1/VE
- 0/E < 5% for high-energy "jets", in a detector with a mass of only | ton!

dominated by fluctuations in shower leakage

In other words:
The same advantages as intrinsically compensating calorimeters (e/h = 1)

WITHOUT the limitations (sampling fraction, integration volume, time)

And this performance can be achieved with a calorimeter consisting of
low-Z absorber material!



How to improve DREAM performance

e Build a larger detector — reduce effects side leakage



Expected effect of full shower containment

= |Mean 133.1
120
E RMS 18.6
80
w05 )
> 0F - -
L 300F
O - |Entries 13507
= 2 .
- F %~ /ndf 292/158
a “OD;— Mean 190.1
- — |Sigma 9.69
= 100
[ =
o £ p) /S method
> = '
m 0: I |
600 = e , .
g | [3507 Knowledge of
E [ ik Socke jet energy used
400 = [Mean 202.5 : S
— |Sigma 4.29
20{);— @ method
. C‘) E
05— —— PN S—— - |
0 50 100 150 200 250

Cerenkov Signﬁl (GeV)

Figure 2: Cerenkov signal distributions for 200 GeV multi-particle events. Shown are the raw data (a), and the
signal distributions obtained after application of the corrections based on the measured em shower content, with (¢)
or without (b) using knowledge about the total “jet” energy [5].



How to improve DREAM performance

e Build a larger detector — reduce effects side leakage

o Increase Cerenkov light yield
DREAM: 8 p.e./GeV — fluctuations contribute 35%/\VE

o Reduce sampling fluctuations
These contributed ~ 40%/ \/E to hadronic resolution in DREAM



Homogeneous calorimeters (crystals)

e No reason why DREAM principle should be limited to fiber calorimeters

e (Crystals have the potential to solve light yield + sampling fluctuations problem
e HOWEVER: Need to separate the light into its C, S components

OPTIONS:
1) Directionality. S light is isotropic, C light directional
2) Time structure. C light is prompt, S light has decay constant(s)

3) Spectral characteristics. C light =8 light depends on scintillator

4) Polarization. C light polarized, S light not.



Separation of PbWO4 :1%Mo signals into S, C components

From:

NIM A604 (2009) 512
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Figure 3: Unraveling of the signals from a Mo-doped PbWO, crystal into Cerenkov and scintillation components.
The experimental setup is shown in diagram a. The two sides of the crystal were equipped with a UV filter (side
R) and a yellow filter (side L), respectively. The signals from 50 GeV electrons traversing the crystal are shown
in diagram b, and the angular dependence of the ratio of these two signals is shown in diagram c .



Separating the Cerenkov and scintillation components
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Cerenkov and Scintillator information from one signal !
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Figure 14: The time structure of a typical shower signal measured in the BGO em calorimeter equipped with a
UV filter. These signals were measured with a sampling oscilloscope, which took a sample every 0.8 ns. The UV
BGO signals were used to measure the relative contributions of scintillation light (gate 2) and Cerenkov light (gate

1y



How to improve DREAM performance

e Build a larger detector —— reduce effects side leakage

o Increase Cerenkov light yield
DREAM: 8 p.e./GeV — fluctuations contribute 35%/\VE

o Reduce sampling fluctuations
These contributed ~ 40%/ \/E to hadronic resolution in DREAM

e For ultimate hadron calorimetry (15%/\/E): Measure Ey;, (neutrons)
Is correlated to nuclear binding energy loss (invisible energy)

Can be inferred from the time structure of the signals



High-resolution hadron calorimetry also requires efficient
detection of the “nuclear” shower component

Time structure of the DREAM signals: the neutron tail
(anti-correlated with f,,,)
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Figure 4: The average time structure of the Cerenkov and scintillation signals recorded for 200 GeV “jets” in the
fiber calorimeter (a). Scatter plot of the fraction of the scintillation light contained in the (20 ns) exponentional tail
versus the Cerenkov/scintillation signal ratio measured in these events () [9].



Probing the total signal distribution with the neutron fraction
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Figure 18: Distribution of the total Cerenkov signal for 200 GeV “jets” and the distributions for three subsets of
events selected on the basis of the fractional contribution of neutrons to the scintillator signal .



The follow-up: RD52

o Concentrate on fiber calorimetry

- Shower containment >99%, i.e. mass ~ 5 tonnes
—» effects of leakage fluctuations negligible

- Preferably copper absorber

e Other design criteria:

- Cerenkov light yield in fiber detector > 100 p.e./GeV (em)
- Sampling fluctuations fiber detector < 10%/VE (em)

Achieved sampling fluctuations 8.9%/\/E, C light yield 40 p.e./GeV
Total stochastic term 13.9%/\/E

- Depth measurement of shower maximum for each event
- Time structure measured for every signal

Needed for particle ID, light attenuation corrections



The 3 x 3 module (72 channels) RD52 calorimeter tested 12/2012
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Electromagnetic performance strongly improved in RD52
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Electromagnetic performance RD52 calorimeter

Moreover, combining S and C signals further improves resolution
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Methods to distinguish e/t in longitudinally unsegmented calorimeter

Lateral shower profile Difference C/S signals
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Combination of cuts: Electron ID efficiency >99.8%, pion mis-1D probability <0.2%






Particle Flow Analysis

o The basic idea
Combine the information of the tracker and the calorimeter system
to determine the jet energy
Momenta of charged jet fragments are determined with the tracker
Energies of the neutral jet fragments come from the calorimeter

® This principle has been used successfully to improve the hadronic
performance of experiments with poor hadronic calorimetry

However, the improvements are fundamentally limited
In particular, no one has ever come close to separating W/Z this way

e The problem
The calorimeters do not know that the charged jet fragments have already
been measured by the tracker. These fragments are also absorbed in the
calorimeter. Confusion: Which part of the calorimeter signals comes from
the neutral jet fragments?

o Advocates of this method claim that a fine detector granularity will help
solve this problem. Others believe it would only create more confusion.
Like with all other issues in calorimetry, this issue has to be settled by
means of experiments, NOT by Monte Carlo simulations!!



Particle Flow Analysis

A quote from the scientific literature NIM A495 (2002) 107

Important ingredients

e A large detector (i.e. tracking volume, —
o A strong magnetic field

o An excellent tracker

e A poor detector for hadron showers — _

PFA may turn poor
_> jet detection into
mediocre jet detection

Check: CMS ATLAS
e A large detector (i.e. tracking volume, V V
o A strong magnetic field V X
o An excellent tracker v X
e A poor detector for hadron showers v X
benefits does not

from PFA benefit



A frequently used, but misleading argument

e The fact that 65% of the jet energy is measured with excellent precision
in the tracker is irrelevant

(& B
In our detectors, the charged tracks are better measured than photon(s) From:
which are themselves better measured than neutral hadron(s) ’
Resolution on the charged track(s) Ap/p ~qq 10° || E = Euhs,rgcd rmacks T Ey T Epo J.C. Brient
Resolution on the photon(s) AE/E ~ 12% e = = i CALOR 08
Resolution on the h° AE/E ~ 45%

\ : Y

What matters for the jet energy resolution are the fluctuations in this 65%.

In the absence of a calorimeter, one should

therefore not expect to be able to measure jet From: NIM A495 (2002) 107

energy resolutions better than 25-30% on the basis
of tracker information alone, at any energy. And



On high-resolution hadron calorimetry

‘H Available online at www.sciencedirect.com

NUCLEAR
INSTRUMENTS
SCIENCE DIRECT®
ﬁ,@ (d & METHODS
;gb / IN PHYSICS
RESEARCH
ELSEVIER Nuclear Instruments and Methods in Physics Research A 495 (2002) 107-120 SectionA

www.elsevier.com/locate/nima

On the energy measurement of hadron jets

Olga Lobban, Aravindhan Sriharan, Richard Wigmans*

Department of Physics, Texas TECH University, Box 41051, Lubbock, TX 79409-1051, USA

Received 16 July 2002; received in revised form 26 August 2002; accepted 28 August 2002

Abstract

The elementary constituents of hadronic matter (quarks, anti-quarks, gluons) manifest themselves experimentally in
the form of jets of particles. We investigate the precision with which the energy of these fragmenting objects can be
measured. The relative importance of the instrumental measurement precision and of the jet algorithm is assessed. We
also evaluate the ““energy flow” method, in which the information from a charged-particle tracker is combined with that

from a calorimeter in order to improve the jet energy resolution.

© 2002 Published by Elsevier Science B.V.
PACS: 02.70.Uu; 29.40.Vj

Keywords: Calorimetry: Fluctuations; Jets; Energy flow

From Conclusions:

Both our simulations and the experimental data
show that the EFM does offer a beneficial effect.
However, this effect should not be exaggerated.
The mmprovement in the energy resolution is
typically 30%. Poor calorimeter systems benefit
more than good calorimeter systems, and a strong
magnetic field also helps.

cf CMS vs ATLAS !!

No experimental evidence to the contrary!!

bosons and decreases at higher energies. Claims
that much better results may be achieved for
highly granular calorimeter systems, in which the
showers generated by the individual jet fragments
may be recognized and separated from each other
are unsubstantiated. We have shown that for most
of the showers in practical detectors, the overlap
between the shower profiles rather than the
detector granularity is the factor that limits the
benefits of this method.



Calibration

* Proposed PFA systems consist of millions of readout channels

(fine granularity!)

Question: How does one want to calibrate these calorimeters?

Answer (CALICE): DIGITAL calorimetry (energy X #of channels that fired)

2000

This was tried and abandoned

in 1983, for good reasons:
Particle density in the core
of em showers is very high

ADC counts

—>» Non-linearity

From: NIM 205 (1983) 113

1500

1000

500

T y—

1

Number of positrons
| 2 34 5 6

!

e section | ///H
« section 2 /
» section 3 /

. |® section 4 4
> section 5

section |

35 70 105

Enéfgy deposit (GeV)

2 4 6 8 10 12
Number of positrons
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CALICE: A few recent results
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The electromagnetic energy resolution
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Figure 14: The energy resolutions measured using data taken with 1-6 GeV/c eT beams in
the central and uniform regions of the two detector configurations. The results of the fits

described in the text are also shown.

Fit results:
o/E = 132-138)%

VE

O (34-45%




Vienna Conference on Instrumentation

Hadronic calorimeter prototype
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Absorber: Tungsten or Steel
Digital readout: RPCs (I x 1 cm?)
Dimensions: 54 layers, 1 X 1 m?

Tste a CRL, e/ 10 - 300 GeV



Test results digital hadron calorimeter CALICE
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The extremely narrow electromagnetic shower profile

Lateral shower profile
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Some events displays of the CALICE DHCAL
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Experimental tests: The proof is in the pudding

o Testing claims of how well PFA algorithms are capable of avoiding
double counting should be straightforward for the CALICE Collaboration,
who have pursued this technique experimentally in the last 10 years

* A jetis a collection of particles, mainly

pions and photons. If one has a data base

of beam particles of different energies
hitting the calorimeter system at
different impact points, one could

use these experimental data to
construct the energy deposit profile
Jfor a given jet in many different ways.

e For each profile, one could apply
one’s favorite PFA algorithm to
eliminate the contributions from
charged hadrons and determine the
remaining calorimeter energy, which
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could then be added to the (precisely known)
energy of the charged hadrons to give the jet energy = Jel response junction



Conclusions

e In the past 30 years, calorimeters have become the heart and soul
of almost any experiment in particle physics, for good reasons

» Electromagnetic calorimeters have become precision tools,
in stark contrast with hadron calorimeters

e The quality of hadron calorimeters has decreased in the last 20 years,
partly because of the lack of meaningful MC simulations.

e [n longitudinally segmented calorimeters, the problem of the jet
energy scale may be fundamentally unsolvable, especially when
different segments have (very) different e/l values
In general: Longitudinal segmentation = asking for (calibration) trouble

* In calorimeters, more information does not necessarily lead to better
results, but instead to more confusion (cf. thermal calorimeters)

e There are major advantages in a calorimeter that has the same
response (signal/GeV) to all particles, regardless their nature or
energy, such as the one DREAM is developing









Naive expectations for hadron calorimeters

Average composition of non-em shower component:

- Pions, kaons,.... 20% (relativistic)

- Protons 25%

- Neutrons 15%

- Invisible 40%

Exp. value

Cherenkov calorimeter: e/h = 1/0.2 e 5
Crystal calorimeter: e/h = 1/(0.2 + f1.0.25)with f1 < 1 . 2
LAr calorimeter: e/h = miip (0.2 + f1 -0.25) , 0.6<}%)<] 1.3-1.8"
Plastic-scint. calorimeter elh =’7€-}—)/(0.2 +f1.025+2.015)withf2>1 < |5

/1 describes signal saturation |2 the (tuneable) neutron efficiency

Efficient neutron detection is also very important for hadronic energy resolution
because kinetic energy neutrons correlated with invisible energy

Therefore, intrinsic resolution much better in ZEUS,SPACAL than in DO

* Except for uranium absorbers ( fission energy)



High-resolution jet spectroscopy (2)

1. Compensating Pb/scintillator calorimetry

JLC prototype studies: NIM A432 (1999) 48
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Avoid repeating mistakes from the past

e Don't place readout elements that produce HUGE signals for one
particular type of shower particle in the path of the developing shower
(“Texas tower” effect)

< iy Charged nuclear fragments may be
-20 R el o 100 - 1000 times minimum ionizing.
e P When traversing an APD, they may
create a signal 100,000 times larger
than that from a scintillation photon.

it 5
) B
i

e 0N [ ample: In CMS ECAL, such events
e g may fake energy deposits of tens of GeV.

e “Digital” calorimetry was tried and abandoned for good reasons (1983)






Average calorimeter signal (Gel)

Calorimetric separation of ionization / radiation losses

Muon signals in the DREAM calorimeter
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DREAM: The importance of leakage and its fluctuations

Lateral shower containment ()
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Neutron information can be used to improve the response function
and the energy resolution
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Figure 19: Distribution of the total Cerenkov signal for 200 GeV “jets” before (a) and after (b) applying the
correction based on the measured value of f,,. described in the text. Relative width of the Cerenkov signal distri-
bution for “jets” as a function of energy, before and after a correction that was applied on the basis of the relative
contribution of neutrons to the scintillator signals (c¢).
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A crucial feature: No longitudinal segmentation

e Advantages:

- Compact construction
- No intercalibration of sections needed
- Calibrate with electrons and you are done

® Possible disadvantages:
- Dealing with pile-up (not an issue at ILC)

- Pointing for neutral particles
- Electron ID

However, a fine lateral granularity can do wonders
In addition:

e Time structure of the signals can provide crucial depth information



Depth of the light production
and the starting point of the PMT signals
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Use starting time PMT signal to determine the depth

of the light production and thus identify particle
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Use depth of light production to correct for light attenuation
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Methods to distinguish e/ in longitudinally unsegmented calorimeter

Lateral shower profile
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Advantages / disadvantages HHCAL concept

Advantages:

- No sampling fluctuations

- Some calibration problems characteristic for sampling calorimeters
don’t play a role

Disadvantages:

- No sensitivity to neutrons, and thus to invisible energy fluctuations
- Light attenuation

- Readout

- COST






The crucial elements of hadronic shower simulations

The non-electromagnetic shower component

A very large fraction (> 80%) of the calorimeter signal from this
component 1s caused by protons and other nuclear fragments.

Pions and other mips play, at best, only a minor role.
It 1s, therefore, crucial to simulate the processes in which these
protons are being produced, as accurately as possible.

—» Nuclear breakup processes determine many aspects of the
hadronic calorimeter performance



The non-electromagnetic shower component (1)

How do we know that protons dominate non-em signal?

1) Because of the small hadronic signals
(i.e. large e/h values) of calorimeters that are blind
to these protons.

In quartz-fiber calorimeters (» = 1.46), only particles with 3 > 0.69 emit
Cerenkov light, i.e. £, > 0.2 MeV for electrons and > 350 MeV for protons



Average Cerenkov signal (GeV)
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The non-electromagnetic shower component (2)

How do we know that protons dominate non-em signal?

1) Because of the small hadronic signals
(i.e. large e/h values) of calorimeters that are blind
to these protons.

In quartz-fiber calorimeters (» = 1.46), only particles with 3 > 0.69 emit
Cerenkov light, i.e. E;,, > 0.2 MeV for electrons and > 350 MeV for protons

2) Because of the absence of correlations
between the signals from adjacent active layers
in fine-sampling hadron calorimeters
The calorimeter from the example had 0.06 A;y thick sampling layers.
A mip would lose on average 12.7 MeV traversing these layers.



Correlations between signals from different sampling layers
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The crucial elements of hadronic shower simulations (2)

Where do these protons come from?

1) Nuclear spallation.

Spallation protons typically carry ~ 100 MeV kinetic energy.
Their range 1s typically of the order of the thickness of sampling
layers in hadron calorimeters.

2) Nuclear reactions induced by neutrons, e.g. (n,p) reactions

These protons have kinetic energies comparable to those of the
(evaporation) neutrons that generated them (< 10 MeV)
These neutrons outnumber spallation protons by an order of magnitude

Measurements of neutron production in hadronic showers:
> 40 per GeV 1n some materials (NIM A252 (1986) 4)



The importance of hydrogen in the absorbing structure
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(Nuclear evaporation) neutrons are typically produced with Ey;, ~ few MeV.
Elastic n-p scattering slows these neutrons down.
239Np is produced by thermal neutron capture in uranium






Resolution improvement expected with EFM
Energy (GeV) —

30 50 100 1000 o0
20 | ! I 1 1 LI I | I LI |
N
- . —+- SPACAL
N o ——-6/E=70%/\VE + 5%
S i N ¢ Energy Flow Method| 1
S 1s) N i
e N
- B /(x — 3 ~ - .
S { .
ot N
= sty S
O o= 6 + ~
2 10} . :
— N -
2 ¢
o0 | 0
g -\-'- L] . ~ -
[-T-] St \+ ~
\+\
0 ! ) L L | L L ! 1 | L 1 I L ] ] L ! 1
0.20 0.15 0.10 0.05 0
~— 1/VE

Fig. 11. The jet energy resolution as a function of energy, obtained after applying the Energy
Flow Method (the black dots), using simulated data from a calorimeter with a jet resolution

given by the dashed curve. For comparison, the jet resolution of a compensating calorimeter
is given (SPACAL [7], the dotted curve). From: NIM A495 (2002) 107.





