
CHAPTER I

INTRODUCTION

Developing materials which meet given specifications is a difficult process. For 

thermoelectrics, this is further complicated due to seemingly contradictory requirements 

for such materials. A good thermoelectric material should have a high Seebeck 

coefficient (S), a high electrical conductivity ( σ ), similar to that of a metal, and low 

thermal conductivity ( κ ), similar to that of a glass. As a result, there is strong interest in 

the development of a fundamental understanding of potential thermoelectric materials 

and in using theory and modeling to identify promising candidates and to suggest 

avenues for optimization. 

Thermoelectric effects were discovered early in the 19th century. Seebeck 

discovered the effect that bears his name in 1821 [1]. In this effect, a voltage appears 

when two different conductors are joined together and the junction is heated. The Peltier 

effect, discovered in 1834 [1], occurs when an electric current passes through the junction 

between two conductors. The junction becomes heated or cooled according to the 

direction of current through it. This reversible effect is usually masked by the irreversible 

phenomenon of Joule heating. However, it is possible to choose the materials so that the 

Peltier effect can be used to produce cooling. In 1851, Thomson (later Lord Kelvin) 

predicted and subsequently observed [1] reversible heating or cooling when an electric 

current is passed along a single conductor in the presence of a temperature gradient. This 

is known as the Thomson effect.

In 1911 Altenkirch showed [1, 2] that good thermoelectric materials should 

possess large Seebeck coefficients, high electrical conductivity, and low thermal 
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conductivity. A high electrical conductivity is necessary to minimize Joule heating, while 

a low thermal conductivity helps to retain the heat at the junctions and to maintain a large 

temperature gradient. Altenkirch introduced the concept of a figure-of-merit (Z), which 

has ever since assisted researchers in the development of thermoelectric materials. The 

figure of merit of a thermoelectric material is defined as: Z=S2 σ /κ where, S is the 

Seebeck coefficient of the material (measured in microvolts/K), σ  is the electrical 

conductivity of the material and κ  is the total thermal conductivity of the material. The 

latter can be written as κ=κ L +κ E  where, κ L  and κ E  are the lattice and the electronic 

contributions to the thermal conductivity, respectively.

Although the properties favored for good thermoelectric materials have been 

known for a long time, the advantages of semiconductors as thermoelectric materials 

were neglected until recently and research continued to focus on metals and metal alloys. 

These materials, however, have a constant ratio of electrical to thermal conductivity 

(Weidman-Franz-Lorenz law) so it is not possible to increase one without increasing the 

other. Metals best suited to thermoelectric applications should therefore possess a high 

Seebeck coefficient. Unfortunately, most possess Seebeck coefficients of the order of 10 

microvolts/K, resulting in thermoelectric generating efficiencies of only fractions of a 

percent. As early as 1929, when very little was known about semiconductors, Abram 

Fedorovich Ioffe (1880-1960) showed [3] that a thermoelectric generator utilizing 

semiconductors could achieve a conversion efficiency of 4%, with further possible 

improvement in its performance. 

A large number of semiconductor materials were being investigated as potential 

thermolectrics by the late 1950's and early 1960’s, several of which emerged with Z 

values significantly higher than those in metals or metal alloys. However, no single 
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compound semiconductor evolved that exhibited a uniformly high figure-of-merit over a 

wide temperature range, so research focused on developing new materials with high 

figure-of-merit values over relatively narrow temperature ranges. Of the great number of 

materials investigated, those based on bismuth telluride, lead telluride and silicon-

germanium alloys emerged as the best for operating temperatures of about 450 K, 900 K 

and 1400 K, respectively.

1.1 Overview of Thermoelectric Materials

Research

Ioffe first proposed the investigation of semiconductor materials for utilization in 

thermoelectric applications [3]. Later, alloys based on the Bi2Te3 or Si1-xGex systems soon 

became some of the most widely studied thermoelectric materials. These materials were 

extensively studied and optimized and to date they remain state-of-the-art materials for 

their use in specific temperature ranges. Recently, there has been a renewed interest in 

developing new materials for thermoelectric and other applications. A combination of 

factors, mainly in the area of alternative refrigeration/power generation and cooling 

electronics, have led to this current interest. Since the early 1990s, many new classes of 

materials have been investigated for their potential in thermoelectric applications. The 

essence of defining a good thermoelectric material lies primarily in determining the 

material’s dimensionless figure-of-merit ZT, where T is the absolute temperature in 

kelvins. The materials of primary interest are those which contain heavy atoms and are 

also relatively easy to dope to tune the electronic properties. The best thermoelectric 

materials currently have ZT ~ 1 [2]. However, there is no fundamental reason why this 

value cannot be larger. One of the goals of current research is to achieve ZT ~ 2-3. 
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Considerable attention has been given to the bismuth-antimony (Bi-Sb) alloys for 

thermoelectric applications [4-6]. Smith and Wolf (1962) [7] first studied the Bi1-xSbx 

alloys as potential materials for electronic refrigeration. They reported that n-type Bi-Sb 

alloys had higher ZT than the Bi2Te3 alloys in the temperature range 20-220 K. However, 

the immediate application of Bi-Sb alloys were constrained due to the lack of suitable p-

type material with compatible properties that could be incorporated into a single 

thermoelectric device. Later, Goldsmid et al. (1988) [8] showed that a p-type high-Tc 

superconductor can have a similar ZT as the n-type Bi-Sb alloys. Over the years there has 

been a great volume of work done on the unique properties of Bi-Sb alloys. Despite these 

efforts, there has been no significant improvement in the figure-of-merit of the Bi-Sb 

alloys since the first work by Smith and Wolf.

Half-Heusler alloys have also emerged as potential thermoelectric materials. A 

group of compounds having the formula MNiSn (M = Ti, Zr, Hf) were found to be 

semiconducting with band gaps in the range 0.1-0.2 eV [9]. These alloys also exhibited 

large Seebeck coefficients and moderately high electrical resistivity [10, 11]. Soon this 

type of half-Heusler compounds became important materials in thermoelectric research. 

Recent studies have revealed many important electrical and thermal properties of these 

materials [12, 13]. The typical ZT of these materials is ~0.6 at 800 K. The best 

thermoelectric materials currently have ZT close to unity. This underscores the 

importance of half-Heusler alloys as potential thermoelectric materials. Their 

performance may be further enhanced by reducing the lattice contribution of the 

constituent elements to the thermal conductivity. 

Quasicrystals are another class of very important materials for thermoelectric 

purposes. After their first synthesis in 1984 [14], quasicrystals remain one of the most 
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fascinating materials. They are characterized by their unique structure as well as 

properties such as high mechanical strength and low thermal conductivity over a broad 

temperature range. Quasicrystals have thermal conductivities that are below 10 W/m-K 

between 2-1000 K, with room temperature values typically within 2-3 W/m-K [15]. This 

obviously caught the attention of the thermoelectric research community. Theoretical 

predictions indicate high ZT values may be possible in these materials [16]. However, 

studies on the tunability of the electrical properties and the Seebeck coefficient and the 

effect of compositional changes on the material properties are needed in order to fully 

understand the feasibility of quasicrystals in thermoelectric applications.

Much of the current research on thermoelectric materials has revolved around the 

concept of  the “phonon glass-electron crystal” model (PGEC) which was proposed by 

Slack [17]. This concept suggests that good thermoelectric materials should have the 

electronic properties of a crystalline material and the thermal properties of a glass. One 

promising class of materials that fit the PGEC concept is the Group IV semiconductor 

clathrates. 

Clathrates are mainly classified into two categories: type I and type II. The type I 

Ge clathrates, for example, are based on compounds having formula A8Ge46 where “A” 

represents guest atoms within voids in the Ge network. One particular material with the 

composition Sr8Ga16Ge30 (Nolas et al., 1998) [18] has a lattice thermal conductivity at 

room temperature that is less than twice that of amorphous Ge. Similarly, low thermal 

conductivities have been reported for Ge clathrates containing other elements such as Eu 

(Cohn et al., 1999) [19]. Similar work has been done on Si [20] and Sn clathrates [21, 

22].  Some of the clathrates have high Seebeck coefficients and a dimensionless figure-

5



of-merit approaching unity at about 700 K. The detailed properties of these materials will 

be discussed in a later chapter.

For several years, work has also been done on materials known as skutterudites. 

Binary skutterudites have the chemical formula MX3 where M = Co, Ir, Rh and X = P, As, 

Sb. A major feature of the crystal structure of these materials is two large empty spaces 

(called “cages”) within the unit cell. Some skutterudites have large Seebeck coefficients 

of the order of ±200 microvolts/ K, but the thermal conductivity is generally large. 

However, the lattice thermal conductivity ( κ L ) can be substantially reduced by 

introducing heavy atoms into the spaces in the lattice. This has been successfully done, 

for example, by Nolas et al. (1998) [23] who added La to CoSb3. In this case, it was 

found that the lattice thermal conductivity was reduced by an order of magnitude at room 

temperature. Reason for this reduction was due to the scattering of the lattice phonons 

due to “rattling” of the loosely bound atoms in their “cages”. A dimensionless figure-of-

merit of about unity has been observed for these materials at 700 K.

There are other systems that show promise for thermoelectric applications. One of 

the recent proposals was that the figure of merit might be improved if two-dimensional 

structures were used [24]. It is possible that a one dimensional system will be better still. 

However, it is not clear how low dimensional systems can be incorporated within 

practical devices. 

1.2 Motivation for this Work

Among the different types of materials investigated, open framework Si and Ge 

clathrates have been the subject of considerable interest in recent years. This is mainly 
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due to structural characteristics that give rise to their unique electrical and thermal 

transport properties [2]. There are two structural clathrate phases: (i) Type I is a simple 

cubic structure in which 20-atom cages (pentagonal dodecahedra) and 24-atom cages 

(tetrakaidecahedra) are combined periodically in a 2 to 6 ratio. (ii) Type II has a face 

centered cubic (fcc) structure in which 20 and 28-atom cages (hexakaidecahedra) are 

combined periodically in a 4 to 2 ratio. The cubic unit cell contains 46 atoms and 136 

atoms in the type I and type II structures, respectively [25]. The clathrate framework 

cages can host guest atoms, which are usually alkali or alkaline earth atoms. This unique 

structural feature has generated considerable experimental and theoretical interest. 

The type II clathrate unit cell has two different sized cages (dodecahedra and 

hexakaidecahedra) which can host the alkali or alkaline earth metal guest atoms. These 

guest atoms, also known as “rattlers”, due to their low frequency vibrational modes, are 

loosely bound inside the cages. Their localized vibrations may also scatter the heat 

carrying phonons of the host framework [26-28], which may contribute to a reduction in 

the lattice thermal conductivity. The guest atoms may also significantly alter the 

electronic properties of the host material. Most filled type II clathrates are metallic [29, 

30]. This means that the electronic contribution to the thermal conductivity could be large 

and hence such materials are not very useful as thermoelectrics.

The main reasons for the continued interest in this compound class are (i) 

theoretical studies and experimental syntheses of guest filled Si and Ge clathrates 

showing that they have glass-like thermal conductivity [17, 19, 31, 32], (ii) the prediction 

and demonstration of electronic properties ranging from poorly semiconducting (low 

guest content) to semi-metallic (high guest content) behavior [33-36], and (iii) the 

discovery of superconductivity in NaxBaySi46 clathrates [37]. 
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The type II clathrates have been relatively less investigated compared to the type I 

variety. The most interesting aspect of type II clathrates is that the guest atom 

concentration in the two different cages may be varied from 0 to 24 per unit cell. There is 

a need for continued research on this type of materials to gain better insight of their 

properties, which may lead to potential applications in semiconductor, superconductor, 

thermoelectric and opto-electronic devices.

First principles methods have been used in this work to explore the properties of 

several type II materials. This work has investigated the structural, electronic, and 

vibrational properties as well as some thermodynamic properties of these materials using 

an approach based on density functional theory. The calculations have been carried out 

within the local density approximation (LDA). A hope is that these calculations will be 

used as a complementary tool to experimental investigations. Many experimental groups 

have recently started to use band structure calculations to sift through various compounds 

with the goal to find new thermoelectric materials [2, 38-40]. Wherever possible, our 

predicted results have been compared with available experimental data with the goal of 

better prediction of materials properties from first principles calculations. 
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CHAPTER II

GROUP IV TYPE II CLATHRATES

The word “clathrate” is derived from the Latin word “clathratus” meaning 

enclosed or protected by cross bars of a grating. It is presently used in chemistry to 

describe a particular type of compound where one component forms a cage structure in 

which atoms or molecules of another component of appropriate size are entrapped. These 

inclusion structures have been known for many years as naturally occurring hydrates of 

some species, where crystalline complexes of water form clathrate compounds with 

simple molecules such as chlorine (Cl2). This type of compounds has been known for 

more than a century [41]. Subsequently, many different clathrate hydrates have been 

synthesized in the laboratory with different inclusion materials such as noble gases, low 

molecular weight hydrocarbons etc.

In the 1960s, Cros and co-workers [25, 42, 43] reported the existence of two 

clathrate phases comprised of Group I and Group IV elements, viz. Na8Si46 and Na24Si136. 

These were synthesized in the laboratory and had structures similar to the well known 

clathrate hydrates. Later, in a pioneering work, Cros et al. reported on the high 

temperature electrical properties of NaxSi136 [44].

The type II clathrate has a face centered cubic (fcc) unit cell. There are 34 atoms 

per fcc unit cell. The cubic unit cell has 136 atoms. The pure clathrates are a fourfold 

coordinated open framework structure comprised of face sharing polyhedra. Two types of 

polyhedra, namely a pentagonal dodecahedron (20 atom cage formed by 12 pentagonal 

faces) and a hexakaidecahedron (28 atom cage formed by 12 pentagonal and 4 hexagonal 
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faces), form the buiding blocks of these materials. Figure 2.1 shows the two different 

polyhedral building blocks of the type II clathrate structure [35]. Sixteen pentagonal 

dodecahedra and eight hexakaidecahedra combine periodically to form the 136 atom 

cubic unit cell.  There are twenty four cavities in total per cubic unit cell, which may host 

guest atoms.

 

  

        (a)                                                              (b) 
                                                                                              

Figure 2.1: Polyhedral building blocks of type II clathrate (a) pentagonal dodecahedron 
having 12 faces and (b) hexakaidecahedron having 16 faces [35]. 

The type II structure is represented by the general formula  X8Y16E136, where X 

and Y are typically alkali-metal or alkaline-earth guest atoms filling up the twenty four 

cavities in the unit cell. E represents a Group IV element Si, Ge, or Sn. However, the 

occupancies of the X and Y atoms may be less than 8 and 16 respectively, in the cubic 

unit cell. This would mean only a partial occupancy of the voids.  Figure 2.2 is a 

schematic of the type II Na24Si136 clathrate. The framework Si atoms are represented by 

the dark small spheres and the guest Na atoms by the lighter spheres [45]. 
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Figure 2.2: Schematic representation of the Na24Si136 clathrate. The dark spheres represent 
the Si atoms and the light spheres represent the Na atoms [45].

The clathrate framework is formed by distorted tetrahedral covalent bonding of 

the Group IV atoms (Si, Ge or Sn). The bond angles may range from 105º to 126º [1], 

and the average is close to the perfect tetrahedral angle of 109.5º. The guest atoms are 

interstitially  placed  inside  the  cages  and are  loosely  bound with  the  host  framework 

atoms.

As mentioned earlier, Cros and co-workers [42, 43] reported in the 1960s about 

the existence of both type I and II clathrate phases of Si and Ge. For a long time not much 

attention was paid to these materials except a few studies on their structural, electrical 

and magnetic properties [33]. Following the demonstration of the phonon glass-electron 

crystal concept (PGEC), there has been a renewed interest in these open-structured 

semiconducting compounds. Since the mid 1990s there has been a resurgence both in 

theoretical and experimental work done on the Si, Ge and Sn clathrates.
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Adams et al. (1994) [46] reported a theoretical study on the structural and 

electronic properties of the Si clathrates. Using an approximate tight-binding-like 

molecular dynamics method, they found an indirect band gap of 2.4 eV for Si136 

compared to 1.7 eV in diamond structured Si (d-Si). Using a plane-wave basis, they 

found an indirect band gap of 1.4 eV for Si136 and 0.7 eV for d-Si. In either case there is 

an enormous opening of the band gap for the Si136 phase compared to that of d-Si. This 

widening of the band gap could have useful optoelectronic applications. They also noted 

that the total binding energy of the clathrate phase was only 0.07 eV/atom higher than the 

d-Si phase, whereas the volume increase in the clathrate phase was about 17%. 

The LDA calculated band gap of Si136 is approximately 1.2 eV [47]. However, 

LDA is known to under estimate band gaps. Using the GW quasiparticle approach it has 

been shown that the band gap for Si136 opens up to 1.9 eV [48].

Smelyansky et al. (1997) [36] reported on the theoretical study of the electronic 

structure of NaxSi136 for x = 0, 4, 8, 16 and 24. They showed that at low Na concentration 

(Na ≤ 8), the Si clathrates behave either as an insulator or a semi-metal. The metallic 

character became prominent with increasing Na concentration. They postulated that, at 

low Na concentration, when the large hexakaidecahedra cages were preferentially 

occupied, the interactions between the framework and the alkali metal remained small 

and there was no charge transfer from the metal atom to the host framework, resulting in 

an insulator or semi-metal type behavior. At high Na concentration there was a definite 

charge transfer from the metal atom to the Si framework, resulting in a metallic behavior. 

A complete theoretical study of the electronic and vibrational properties of the 

empty Si and Ge clathrates was done by Dong et al. (1999) [47, 49]. Using density 

functional theory within the local density approximation (LDA), they predicted the 
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electronic band structure and the phonon dispersion relations of these materials. As 

previously seen in Si clathrates, the total binding energies of the Ge clathrates were only 

0.04-0.05 eV/atom higher than the ground state diamond phase, while their volumes 

expanded by about 13-14%. The phonon dispersion curves showed acoustic modes below 

about 100 cm-1 and 60 cm-1 for Si and Ge clathrates respectively. For the Si clathrates the 

highest frequency optic modes shifted downwards by about 30 cm-1 compared to the 

silicon diamond phase. This frequency downshift was attributed to the topology of the 

clathrate framework, mainly the presence of the five membered rings.

Meanwhile, during the late 1990's, many important experimental discoveries were 

being made. Mélinon et al. (1999) [50] reported the experimental observation of the full 

vibrational density of states in the two Si clathrate phases. The phonon density of states 

was measured using inelastic neutron scattering at 300 K. The reported spectra had three 

distinct regions. A low frequency region, attributed to the acoustic modes (AM), a 

medium frequency region due to some acoustic and mostly optic modes ((A+O)M), and a 

high frequency optic mode (OM) region. They also observed a slight frequency downshift 

of the optical branches towards lower energy in the clathrate phase compared to the 

diamond phase. This frequency downshift was also observed in phonon dispersion 

relations obtained from first principles calculations [47]. 

The temperature dependence of the lattice thermal conductivity ( κ L ) of filled Ge 

clathrates was measured by Nolas et al. [32]. At low temperatures (< 3-4 K), the data 

indicate a T2 dependence, which is reminiscent of the thermal conductivity of amorphous 

materials. At higher temperatures, the thermal conductivity shows a minimum or a dip. It 

was postulated that this “resonance dip” in κ L  of the filled clathrates was due to the 

resonant scattering of host acoustic phonons by the localized vibrational modes of the 
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guest atoms. However, this may not be entirely true as shown in recent studies and also 

seen from our estimated Einstein temperatures, which will be discussed in Chapter VI. 

Figure 2.3 shows experimental results for the lattice thermal conductivity κ L , as a 

function of temperature for the Na1Si136 and Na8Si136 clathrates [45]. There is a noticeable 

dip in κ L  at about 70 K for Na8Si136. The temperature dependence of the lattice thermal 

conductivity for d-Si is shown for comparison (dashed curve). 

Figure 2.3: Experimental temperature dependence of the lattice thermal conductivity 
( κ L ) of Na1Si136 (solid circles) and Na8Si136 (open circles). Also shown is the temperature 
variation of κ L  for crystalline Si (dashed curve)[45].

Nolas et al. (2003) [51] also reported on the thermal properties of the guest free 

Si136. The magnitude of its thermal conductivity at room temperature was reported to be 

slightly larger than that of amorphous silica and about thirty times lower than that of 

diamond phase silicon [51]. The low value of the lattice thermal conductivity in Si136 

cannot be described by the phonon scattering mechanism due to “rattling” atoms. This 
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means the rattling guest atoms inside the cages is not the only mechanism that reduces the 

thermal conductivity of the clathrate materials. The huge difference in the thermal 

conductivities between the two phases of silicon could be related to the flattening of the 

phonon dispersion relations associated with formation of the low density structure of 

Si136.

Variable temperature single-crystal diffraction measurements of various filled 

type II Si and Ge clathrates were also reported by Nolas et al. (2002) [30]. They found 

strong temperature dependence of the atomic displacement parameters (ADP) for the 

alkali metal atoms in Na16Cs8Si136, Na16Rb8Si136, Na16Cs8Ge136 and Na16Rb8Ge136. The ADP 

is a measure of the mean-square displacement amplitude of an atom about its equilibrium 

lattice site. Thus the magnitude of the ADP depends on how “vigorously” the atoms are 

vibrating. The high values of the ADP is indicative of the “rattling” of the guest atoms 

inside the two different sized polyhedra of the clathrates. It is important to note that the 

Cs atom, although heavier than Rb, has been shown to have a lower ADP [30]. Our 

calculations agree with this result (see Chapter VI). This could be important in choosing 

the right “rattler” atoms in order to achieve optimum material properties. The localized 

dynamic disorder created by the guest atom should lead to even lower thermal 

conductivities for the guest filled type II clathrates compared to that for Si136. However, 

thermal conductivity measurements reveal quite large values for the filled type II 

specimens. The thermal conductivity of  Na16Cs8Ge136 , for example, was lower than 

diamond structured Ge but much higher than the filled type I clathrates such as 

Sr8Ga16Ge30 [30]. This is due to the metallic nature of all these type II clathrates which 

resulted in an increased electronic contribution to the total thermal conductivity.
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The above discussion provides a short review of some of the work done so far on 

the Si and Ge type II clathrates. The next chapter will give a brief outline of the present 

work on some of these materials.
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CHAPTER III

  DESCRIPTION OF CURRENT WORK

In the past decade, tremendous effort has been made towards increasing the 

understanding of the properties of the Group IV clathrates. This has led to huge 

advancements in our current knowledge about these materials. However, more progress 

has to be made in order to optimize these materials for various applications including 

thermoelectrics. 

One goal of the current work was to look for explanations for some of the 

experimental observations, particularly the temperature dependent Knight shift as 

observed in some filled type II clathrates [29, 52]. Another consideration was to use the 

results from first principles calculations to predict measurable material properties and to 

compare those with available experimental data. The goal is to better predict material 

properties using first principles calculations, which can serve as an effective tool for 

experimentalists towards optimizing this class of materials.

The materials that were chosen for this work are listed in Table 3.1. Results for 

Si136 and Ge136 have been widely reported before [47, 49]. So the initial aim was to 

reproduce previous results based on our plane-wave calculations. To the best of our 

knowledge there have been no other theoretical studies reported on the rest of the 

materials considered here. There is experimental data available on some these filled 

clathrates, which provides the opportunity to complement the theoretical results with 

available data.

First part of this work is concerned with the structural properties and the 

energetics of these materials. After the structural optimization process, a subsequent 
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fitting of the calculated total binding energies at various volumes to the Birch-Murnaghan 

equation of state [53] provides the minimum equilibrium energy, the corresponding 

volume at minimum energy and the bulk modulus of the various materials. The 

equilibrium volume can be used to find the lattice constant which may be compared with 

available experimental values.

             Table 3.1: List of the different type II Si and Ge clathrates that 
                        are reported in this work.

Si Clathrates Ge Clathrates

Si136, Na16Rb8Si136, K16Rb8Si136, 
Rb8Ga8Si128 and Cs8Ga8Si128 

Ge136, Na16Rb8Ge136 and 
Na16Cs8Ge136

 

Second part of this work focuses on the electronic band structure of these 

materials. The band structure results give important information about the electronic 

properties of a material, including the predicted band gap. Some of the filled clathrates 

show large temperature dependent Knight shifts [29, 52]. Gryko et al. has reported the 

temperature dependence of these shifts in NaxSi136 (7 ≤ x ≤ 9) [54]. Latturner et al. 

reported similar temperature dependent shifts in Na16Rb8Si136 [29]. The most interesting 

feature observed was the fact that these shifts increased with decreasing temperature. This 

strong temperature dependence is very different from the Knight shift observed in metals, 

where it is approximately temperature independent. One portion of this work focuses on 

the calculations which provide an explanation of these observed Knight shifts. It is shown 

that the results for the electronic density of states of these materials provide a qualitative 

explanation for this behavior.

 

18



Framework substitution has not been widely reported among the type II clathrates. 

Thus far, one published work is available on framework substitution in type II clathrates, 

where some of the Si framework atoms were substituted by Ge with no guest atoms 

occupying the cages [55]. Most non-framework substituted filled (partially or completely 

filled) type II clathrates are metallic. This metallic behavior could mean a larger 

electronic contribution to the total thermal conductivity, as seen from the thermal 

conductivity data for Na16Cs8Ge136 [30]. 

The electronic properties of some framework substituted clathrates viz. 

Rb8Ga8Si128 and Cs8Ga8Si128,  have been reported here. The framework substituted 

Rb8Ga8Si128 and Cs8Ga8Si128 clathrates were found to be semiconducting with smaller 

indirect band gap than pristine Si136. This semiconducting property could potentially 

reduce the electronic contribution to the thermal conductivity.   

Next part of this work focuses on the vibrational properties of these materials. The 

phonon dispersion relations show low frequency localized vibrational modes of the guest 

atoms. Using the calculated frequencies in the harmonic approximation, we have 

estimated the effective force constants of the various guest atoms. Based on these 

estimated force constants we have predicted the temperature dependent mean square 

displacement amplitude of the various guest atoms (Uiso). These values of Uiso were 

compared with the experimentally obtained atomic displacement parameter (ADP) for 

some of these materials. Our predicted Uiso are in fairly good agreement with some of the 

experimental values of the ADP.   

There has been a dearth of studies on the thermodynamic properties of the Group 

IV clathrates. Most results reported so far have focused on the synthesis and structural 

and transport properties of these materials [2]. Many theoretical studies have concentrated 
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more on the electronic band structure and vibrational properties of clathrates. Studies of 

the fundamental thermodynamic properties remain limited. These studies could be 

important in order to fully understand the unique properties of the expanded phase 

semiconducting clathrate materials.

The vibrational results were used to calculate the lattice contributions to the 

thermodynamic properties (free energy, entropy and heat capacity at constant volume) of 

the empty Si136 and Ge136 clathrates. Thermodynamic properties of Si136 using the 

harmonic approximation and the Tersoff potential [56] have been reported earlier [57]. 

However, the ab initio calculations performed in this work are more accurate and 

compared better with experimental data than those earlier reports. Our predicted 

temperature variation of the heat capacity of Si136 is in good agreement with experimental 

results [58]. The temperature dependence of the heat capacity of both Si136 and Ge136 is 

found to be similar to that of diamond structured Si and Ge, respectively, in the 

temperature range considered.
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CHAPTER IV

COMPUTATIONAL DETAILS

In this study, total energies, electronic band structures and densities of states were 

calculated using density functional theory (DFT), in which the self-consistent Kohn-

Sham equations [59] are solved in the local density approximation (LDA). The materials 

considered have a face-centered cubic (fcc) structure and have the same symmetry as 

their “parent” (Si136 or Ge136) framework lattice. Details of their crystalline structure and 

symmetry may be found in Refs. 47, 49, 60. The calculations were carried out with the 

Vienna Ab-initio Simulation Package (VASP) [61] using plane-wave basis sets and ultra-

soft pseudopotentials [62, 63]. The Ceperly-Alder functional [64] was used to 

approximate the exchange-correlation term. This method has been extensively and 

successfully used to study many properties of a variety of types I & II clathrates [17, 47, 

49, 60]. In those studies, the calculated properties were in good agreement with 

experiment. The effects of the generalized gradient approximation (GGA) correction to 

the LDA were examined by others for the pristine type II Si136 material and were found to 

be minor [47].

The calculations are carried out as follows. First, using VASP, we optimize the 

geometry of each compound by choosing a fixed volume of the face centered cubic unit 

cell and relaxing the internal coordinates of the atoms through a conjugate gradient 

algorithm using atomic forces. The process is repeated for several different unit cell 

volumes until the global minimum energy is found. Brillouin zone integrations were 

performed using a 4×4×4 Monkhorst-Pack k-point grid [65], with a cutoff energy of 300 

eV. The accuracy of the total energy convergence was set at 10-7 eV. Once the 
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equilibrium lattice geometry is obtained for each material, the resulting LDA energy 

versus volume curve is fit with the Birch-Murnaghan equation of state (EOS) [53],

E V =E 0
9
8

KV 0 [V 0

V 
2/3

−1]
2

{1 4−K '

2 [1−V 0

V 
2/3

]}                    (4.1)

where, E and E0 are the energy and the minimum energy, V and V0 are the volume and the 

volume at the minimum energy, K and K' are the bulk modulus and it’s pressure 

derivative. This fitting determines the minimum binding energy E0, the corresponding 

volume V0, the equilibrium bulk modulus K and its pressure derivative K' = dK/dP. Then, 

using VASP, the electronic band structures and densities of states are calculated for the 

optimized geometry by generating a separate set of k-points along certain high symmetry 

directions in the Brillouin zone.

The vibrational dispersion relations are calculated by obtaining the dynamical 

matrix. The first step is to obtain the force constant matrix by moving each atom by a 

small finite displacement U0 (0.02 Å). The total energy for a large supercell with small 

displacements of the atoms from their equilibrium positions is given by,

E tot =E 0
1
2
∑
α,i
∑
β,j

φαβ
ij U α

i U β
j

, α, β = 1, 2, .....N and i, j = x, y, z directions.   (4.2)

E0 is the static lattice energy and N is the total number of atoms. U α
i is the displacement 

of the atom α in the ith direction, and similarly for U β
j . VASP [61] allows the 

determination of the force constant matrix by calculating the Hessian matrix (matrix 

obtained from the second derivatives of energy with respect to the atomic positions). The 

direct space force constant matrix is then given by,

φαβ=
∂

2 E
∂ x α∂ x β

.                   (4.3)
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A complete row of the force constant matrix is obtained for each move. Each atom is 

moved by ±U0 and the average value of the force constant is obtained from the second 

derivative of the energy. The force constant matrix thus obtained is for wave vector q = 

(0,0,0). 

A 2×2×2 k-point grid and 150 eV cutoff energy has been used to calculate the Γ-

point phonon modes. Calculations repeated with a 4×4×4 k-point grid did not result in 

any appreciable difference in the frequencies. 

In order to obtain the dynamical matrix at non-zero q , we introduce an 

approximation which assumes that the force constant matrix elements vanishes for atoms 

that are separated by a distance that are greater than the third nearest neighbor. Details of 

this method may be found in Refs. 47, 49. Using this approximation, the dynamical 

matrix at any q  is given by,

Dαβ  q =∑
φαβ

mα mβ

exp . [−q⋅ R β−
Rα  ]       (4.4)

where, q  is the wave-vector in the Brillouin zone and R  are the position vectors of the 

nearest neighbor atoms. Once the dynamical matrix is constructed, its diagonalization 

gives the eigenvalues (squared frequencies) and eigenvectors. The vibrational frequencies 

(ω) are obtained by solving the equation,

∣Dαβ q −ω2 δαβ∣=0 .       (4.5)

The thermodynamic properties are evaluated by calculating the Helmholtz free 

energy. In the harmonic approximation, the vibrational contribution to the Helmholtz free 

energy is given by [66],

F vib T =k BT∫
0

∞

[ 1
2
ℏω+k B T ln 1−e−ℏω/k B T

]g ω dω       (4.6)
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where, kB is the Boltzmann constant, h is the Planck constant and g(ω) is the vibrational 

density of states (VDos). g(ω) is normalized such that ∫ g ω dω= 3N , N being the 

number of atoms. The vibrational entropy is given by,

S=− ∂ F vib

∂T 
V

=k B∫
0

∞

[ ℏω
k BT

eℏω/k BT
−1−1− ln 1−e−ℏω/k B T

]g ω dω .       (4.7)

The specific heat capacity at constant volume is calculated using,

CV=−T  ∂
2 F vib

∂2 T 
V

=T  ∂ S
∂T 

V

.       (4.8)
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CHAPTER V

STRUCTURAL AND ELECTRONIC

PROPERTIES

After the structural optimization, the total LDA energies at various volumes were 

fitted to the Birch-Murnaghan equation of state [60], as described in the previous chapter. 

The results for the fitting parameters E0, V0, K, K' and the total binding energy per fcc 

unit cell are listed in Table 5.1 for the different Si clathrates. Experimental values of 

some of the parameters for Si136 are also listed [67, 68]. As expected, the predicted total 

binding energy per fcc unit cell for the completely and partially filled clathrates is higher 

than that for the guest-free Si136. 

       Table 5.1: Birch-Murnaghan equation of state parameters (T = 0 K) obtained 
from a fit of the LDA energy versus volume curve for Na16Rb8Si136, K16Rb8Si136, 
Rb8Ga8Si128, Cs8Ga8Si128 and Si136. Also listed are the available experimental 

       parameters  for Si136 obtained at T = 298 K [67, 68].

Clathrate E0 (eV/atom) V0 (Å3/atom) K (GPa) K'

Na16Rb8Si136 -5.34 19.59 81.88 1.79

K16Rb8Si136 -5.33 19.78 86.17 0.51

Rb8Ga8Si128 -5.56 21.76 81.26 0.23

Cs8Ga8Si128 -5.61 21.45 80.33 4.42

Si136 -5.87 22.71 83.23 3.58

Expt. Si136 - 23.01 90 5.2

Table 5.2 shows the calculated and experimental values of the lattice constants for 

Si136 and Na16Rb8Si136 [25, 29]. It also shows the calculated values for K16Rb8Si136, 

Rb8Ga8Si128 and Cs8Ga8Si128. The equilibrium volume for Na16Rb8Si136 gives a cubic lattice 
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constant of 14.63 Å, about 0.7%  smaller than the experimental value of 14.738 Å [29]. 

The slightly higher value of the lattice constant of the filled clathrates compared to that of 

Si136 (14.56 Å), indicates that the framework structure expands upon inclusion of the 

guest atoms. However, the calculated lattice constant of Cs8Ga8Si128 remains same as that 

of Si136. We speculate that this may be due to the local density approximation. Even 

though the Cs atom is larger than Rb, the LDA does not reflect the expansion of the Cs 

containing cages [60]. 

Table 5.2: Calculated and available experimental values of the 
lattice constants for Na16Rb8Si136, K16Rb8Si136, Rb8Ga8Si128, 
Cs8Ga8Si128 and Si136 clathrates [30, 34].

Clathrate Calculated (Å) Experiment (Å)

Na16Rb8Si136 14.63 14.738

K16Rb8Si136 14.64 -

Rb8Ga8Si128 14.63 -

Cs8Ga8Si128 14.56 -

Si136 14.56 14.626

Experimentally it is seen that in the completely filled clathrates the smaller atoms 

preferentially occupy the smaller cages (dodecahedra) while the larger atoms occupy the 

slightly larger cages (hexacaidecahedra) [69, 70]. In  Na16Rb8Si136 and K16Rb8Si136 the 

smaller Na and K atoms occupy the dodecahedra and the larger Rb and Cs atoms are 

located inside the hexacaidecahedra cages. The Rb and Cs atoms in Rb8Ga8Si128 and 

Cs8Ga8Si128 are located inside the large cages.

Table 5.3 shows the calculated and available experimental values of the lattice 

constants of Ge136, Na16Rb8Ge136 and Na16Cs8Ge136 [43, 44, 69]. As seen from Table 5.3, 
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the experimental lattice constants of Ge136 and Na16Cs8Ge136 are almost same. This may be 

due to the omni-presence of small amounts of alkali metals in the experiments for Ge136 

which may expand the lattice slightly. This may also be the reason for the difference 

between the LDA calculated and the experimental lattice constant of Ge136. 

       Table 5.3: Calculated and available experimental values of the
       lattice constants for Ge136, Na16Rb8Ge136 and Na16Cs8Ge136 
       clathrates [43, 44, 69].

 

Clathrate Calculated (Å) Experiment (Å)

Ge136 15.11 15.48

Na16Rb8Ge136 15.35 -

Na16Cs8Ge136 15.44 15.4805

 

The predicted results for E0, V0, K and K' for Ge136, Na16Rb8Ge136 and Na16Cs8Ge136 

are listed in Table 5.4. In Na16Rb8Ge136 and Na16Cs8Ge136 the Na atoms are inside the 

dodecahedra and the Rb and Cs atoms are inside the hexacaidecahedra cages.

Table 5.4: The parameters of the Birch-Murnaghan equation of state 
obtained from a fit of the LDA energy versus volume curve for Ge136, 
Na16Rb8Ge136 and Na16Cs8Ge136.

Clathrate E0 (eV/atom) V0 (Å3/atom) K (GPa) K'

Ge136 -5.127 25.49 61.27 4.67

Na16Rb8Ge136 -4.682 22.68 49.36 5.8

Na16Cs8Ge136 -4.683 22.95 48.01 3.6

Figure 5.1(a, b)  shows the energy versus volume curve for the different Si and Ge 

clathrates. Although the energy per atom is slightly less for the filled clathrates as seen in 

Fig. 5.1, the total binding energy per fcc unit cell is higher for the filled clathrates (see 
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Table 5.1). This is because there are 40 atoms/fcc unit cell for the completely filled 

clathrates compared to the 34 atoms/fcc unit cell in the pristine Si136 or Ge136. 

Figure 5.1: Equation of state (E vs. V) of (a) Si136, Na16Rb8Si136 and K16Rb8Si136 and (b) 
Ge136, Na16Rb8Ge136 and Na16Cs8Ge136.
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The electronic band structure and density of states (DOS) calculations were done 

for the clathrates at their optimized geometries. It is well-known that the LDA 

underestimates the minimum energy band gaps. However, it has been shown to predict 

energy differences and trends correctly, so a comparison of the band gaps between 

clathrates should be meaningful. Figure 5.2(a, b, c) shows the predicted electronic band 

structures for Si136, K16Rb8Si136 and Na16Rb8Si136, respectively. To enable an easy 

qualitative comparison, for each material we have chosen the zero of energy at the top of 

the valence band. 

The gap between the highest filled (valence band top) and the lowest empty band 

(bottom of conduction band) is estimated as the band gap. The pristine material, Si136, has 

a predicted indirect band gap of about 1.24 eV, in agreement with LDA results obtained 

by others [47]. The band structure results for Na16Rb8Si136 and K16Rb8Si136 are nearly 

identical to those of the parent Si136 clathrate. 

Since all host framework bonds are satisfied by the Si valence electrons, electrons 

from the guests occupy the conduction states of the parent Si136. The Fermi levels for the 

filled clathrates lie within the Si136 conduction band, as shown in Figs. 5.2(b, c). Our 

results agree qualitatively with the “rigid-band model” [71], which predicts that the bands 

for the guest-containing materials are nearly the same as those of the framework and that 

there is a charge transfer from the guests into the host conduction states. This raises the 

Fermi level (Ef) into the conduction band. The band structure results for Na16Rb8Si136 are 

consistent with the metallic behavior reported for that material by Latturner et al [29].
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Figure 5.2: Electronic band structures of (a) Si136 (b) K16Rb8Si136 and (c) Na16Rb8Si136. In 
all figures, the top of the valence band is the zero of energy. In Figs. (b) and (c), the 
Fermi level is pushed into the conduction band as shown by a dashed line at ~1.6 and 1.4 
eV, respectively.

Figure 5.3 shows the predicted total electronic density of states (DOS) for the 

Si136, K16Rb8Si136 and Na16Rb8Si136 clathrates. The DOS distribution near the Fermi level of 

the filled clathrates show a charge transfer from the different guest atoms to the Si 

framework. The DOS near the Fermi level is higher for these filled clathrates, because the 

guest atoms donate electrons to the Si framework. This increase might be associated with 

the metallic behavior observed in Na16Rb8Si136 [29]. 
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Figure 5.3: Electronic density of states of Si136, K16Rb8Si136 and Na16Rb8Si136 in the valence 
band and the lower portion of the conduction band. The Fermi levels of K16Rb8Si136 and 
Na16Rb8Si136 are shown by a vertical line.

Figure 5.4 shows the predicted electronic band structures of Rb8Ga8Si128 and 

Cs8Ga8Si128, respectively. The Si136 framework has three Wyckoff sites, viz. 8a, 32e and 

96g. The eight Ga atoms are substituted at the 8a crystallographic sites of the Si-

framework. This ensures an energetically favored configuration with no Ga – Ga bond. 

Similar substitution made at the “e” or “g” sites resulted in higher total energies. The 

band structures again can be qualitatively described in the context of the rigid-band 

model. This rigid band character of the band structure means that the guest to framework 

interactions are predominantly ionic in nature and that the guest atoms act as electron 

donors. It also indicates that the Ga atoms in the framework, with their s2p1 valence 

electronic configuration, allow the covalent Ga – Si bonds to accept electrons from the 

guest atoms.
32



-12

-10

-8

-6

-4

-2

0

2

4

 

 

 

 E
n

e
rg

y,
 E

 (
e

V
)

Rb
8
Ga

8
Si

128

L Γ X W K Γ

-12

-10

-8

-6

-4

-2

0

2

4

 

 

E
n

e
rg

y,
 E

 (
e

V
)

L Γ X W K Γ

Cs
8
Ga

8
Si

128

Figure 5.4: Electronic band structures of Rb8Ga8Si128 and Cs8Ga8Si128. The top of the 
valence band is taken as the zero of energy. In Rb8Ga8Si128 and Cs8Ga8Si128 there is an 
indirect band gap of ~0.73 and 0.77 eV, respectively.
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The band structure calculations show that Rb8Ga8Si128 and Cs8Ga8Si128 are 

semiconducting with predicted indirect band gaps of approximately 0.73 and 0.77 eV, 

respectively. This is in contrast to the predicted band structure for Rb8Si136 (not shown) 

and Na16Rb8Si136, which were found to be metallic in character. The reason for this is that 

all host Si – Si bonds in Rb8Si136 and Na16Rb8Si136 are satisfied by the Si valence electrons. 

Therefore in those materials, electrons from the guest atoms occupy the host conduction 

band states, making the materials metallic. This is not the case in Rb8Ga8Si128 and 

Cs8Ga8Si128, due to the unpaired p electrons  in the Ga atoms.

In order to emphasize the effect of Ga substitution, we have included in Fig. 5.5 

the total electronic density of states (DOS) of Rb8Si136 along with those of Rb8Ga8Si128 and 

Cs8Ga8Si128. For each material we have chosen the zero of energy at the top of the valence 

band. Unlike the Ga-substituted clathrates, the Fermi level (Ef) of Rb8Si136 was found to 

lie inside the conduction band. Rb8Si136 is predicted to have a metallic property. 

Figure 5.6 shows the s and p-orbital projected density of states for the guest Rb 

and substitutional Ga atoms in Rb8Ga8Si128. It shows the Ga p-states near the top of the 

valence band which are likely responsible for the semiconducting nature of this material. 

The gap between the valence and conduction bands is considerably reduced in the filled 

clathrates, when compared to the calculated LDA band gap of about 1.24 eV in pristine 

Si136. Figure 5.6 shows the Ga p-states at the top of the valence band and the Rb s-states 

near the bottom of the conduction band. These states are likely the cause for the reduction 

in the overall gap between the valence and conduction bands in the filled clathrates. 
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Figure 5.5: Total electronic density of states of Rb8Si136, Rb8Ga8Si128 and Cs8Ga8Si128. The 
Fermi level of Rb8Si136 lies at the bottom of the conduction band as shown by a vertical 
line.

Figure 5.6: s (solid curve) and p-orbital (dashed curve) projected density of states for (a) 
Rb and (b) Ga atoms in Rb8Ga8Si128. 
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Experimentally measured total thermal conductivity of the filled type II clathrates 

is higher compared to those of the type I structure [30]. This is because of their metallic 

character, which increases the electronic contribution to the total thermal conductivity. 

The semiconducting nature of Rb8Ga8Si128 and Cs8Ga8Si128 may help reduce this electronic 

contribution.

Figure 5.7 shows the predicted electronic band structure for Ge136. The LDA band 

gap for Ge136 is approximately 0.75 eV, similar to the band gap found in other studies 

[49]. Figure 5.8  shows the predicted electronic band structures for Na16Rb8Ge136 and 

Na16Cs8Ge136, respectively. 

Figure 5.7: Electronic band structure of Ge136.
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Figure 5.8: Electronic band structures of Na16Rb8Ge136 and Na16Cs8Ge136. In both materials 
the Fermi level lies inside the conduction band as shown by a dashed line at ~1.6 and 1.5 
eV, respectively.
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As in the case of the Si clathrates, the “rigid-band model” may be applied to the 

filled Ge clathrates as well. The rigid-band character indicates a charge transfer from the 

alkali guest atoms to the Ge framework, without any strong hybridization of the states 

near the Fermi level. Na16Rb8Ge136 and Na16Cs8Ge136 are predicted to be metallic which is 

consistent with experimental observations [69, 70].

Figure 5.9 shows the predicted electronic density of states (DOS) for the different 

Ge clathrates. The DOS near the Fermi level is higher for both of the filled Ge clathrates, 

because the guest atoms donate electrons to the Ge framework. This increase might be 

associated with the metallic behavior observed in Na16Rb8Ge136 and Na16Cs8Ge136 [69, 70]. 

Figure 5.9: Electronic density of states of Ge136, Na16Rb8Ge136 and Na16Cs8Ge136 in the 
valence band and the lower portion of the conduction band. The Fermi levels of the filled 
clathrates are shown by a vertical line.

5.1 Knight Shift

The magnetic coupling of the electrons to the nucleus arises from the interaction 

of the electron magnetic moment with that of the nucleus. The electron magnetic moment 

originates from the motion of the electrical charges about the nucleus and due to the 
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electron spin [72]. The coupling caused by the magnetic moment associated with the 

electron spin gives rise to the so called Knight shifts which are observed in nuclear 

magnetic resonance (NMR) experiments.  Knight shifts are generally observed in metals. 

In the absence of an external magnetic field, there is no preferential orientation of 

the conduction electron spins in metals. Upon application of an external field, the electron 

spins become polarized which gives rise to an effective field at the site of the nucleus. 

This effective field causes a shift in the nuclear resonance, known as the Knight shift.  

 In recent years, several groups reported on the large shifts observed in NMR 

studies of filled Si and Ge clathrates [29, 52, 54, 73]. For example, the observed shifts for 

23Na in NaxSi136  (7 ≤ x ≤ 9 and x ≈ 24) were between 1600 ppm and 2000 ppm [54]. The 

values of the shifts were referenced to a 1 molar solution of NaCl taken as 0 ppm. The 

origin of these shifts were due to the interaction between nucleus under observation and 

the delocalized electrons from the alkali atoms having energies near the Fermi surface. 

Hence those observed shifts in the nuclear resonance were characterized as “Knight 

shifts”. Such Knight shifts have also been reported for  Na16Rb8Si136, Na16Cs8Si136 and the 

Cs8Ge136  clathrates [29, 71, 73]. In these type II clathrates, the Knight shifts for 23Na, 

87Rb, 133Cs and 29Si each increase with decreasing temperature. The temperature 

dependence were typically observed in the 140 to 500 K range. For example, the 

temperature dependence of 133Cs shifts in Cs8Ge136 ranged from about 7600 ppm at 300 K 

to about 6500 ppm at 423 K [73]. This strong temperature dependence is very different 

from the Knight shift observed in metals, where it is approximately temperature 

independent [74]. 

The conduction electrons in metals, whose wave functions are generally derived 

from the atomic s-orbitals, have non-vanishing wave functions at the site of the nucleus 
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[75]. Thus a temperature-dependent contribution from the magnitude of the s-component 

wave function at the nucleus ( ∣ψ s 0 ∣ ) may be a contributing factor to the temperature-

dependent Knight shift observed in the filled clathrates. Here, we show the results of our 

calculation of the total and the projected electronic DOS for the different filled clathrates, 

which gives a qualitative description of the temperature dependence of the of the 

observed Knight shifts.

As originally proposed by Gryko et al. [54], the temperature dependent Knight 

shifts may be related to a structural feature of the electronic DOS of the filled clathrates, 

which is not generally seen in metals. This consists of two sharp peaks near the Fermi 

level (Ef), separated by an energy difference (∆E) which is comparable to kBT, where kB is 

the Boltzmann constant. They also postulated that the lower of the two peaks are derived 

from the donated electrons from the alkali atoms inside the clathrate cages. If the 

separation between those two peaks is of the order of kBT, then that could possibly 

explain the temperature dependence of the observed Knight shift. Figure 5.10 shows the 

electronic densities of states near the lower portion of the conduction band of Si136, 

Na16Rb8Si136 and K16Rb8Si136. 
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Figure 5.10: Comparison of density of states of Si136, Na16Rb8Si136 and K16Rb8Si136 in the 
lower portion of the conduction band. Peak separation (∆E) are shown. Fermi levels for 
Na16Rb8Si136 and K16Rb8Si136 are shown as Ef,Na and Ef,K respectively. 
 

The above figure shows two peaks, separated by a ∆E near the Fermi level in both 

Na16Rb8Si136 and K16Rb8Si136. This seems to be consistent with the previous description. 

However, the ∆E separating the two peaks approximately ranges from 200 to 400 meV 

(see Fig. 5.10). This is much larger than the kBT  in the range where the observed 

temperature dependence of the shifts have been reported. 

Figure 5.11 shows the lower portion of the conduction band of Ge136, Na16Rb8Ge136 

and Na16Cs8Ge136.  Interestingly, neither Na16Rb8Ge136 nor Na16Cs8Ge136 show any sharp 

peaks near their respective Fermi levels.  These peak like structures near Ef  were not 

present in band structure calculations of Cs8Ge136  either [73]. But Cs8Ge136  is known to 

have a large temperature dependent Knight shift, just like the filled Si clathrates.
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Figure 5.11: Comparison of density of states of Ge136, Na16Rb8Ge136 and Na16Cs8Ge136 in 
the lower portion of the conduction band. Fermi levels for Na16Rb8Ge136 and Na16Cs8Ge136 

are shown as Ef,Rb and Ef,Cs respectively. 

Figure 5.12 shows the s and p-orbital projected density of states of the different 

alkali atoms in the Si clathrates. The wave function character is calculated by projecting 

the wave functions into spherical harmonics (Yl,m), where l = 0 corresponds to s-orbitals, l 

= 1 to p-orbitals etc. The projected densities in Fig. 5.12 show the s (solid line) and p-

orbital (dashed line) contribution from the Na and the K atoms located in the 20-atom 

cage, and the Rb inside the 28-atom cage for the Si clathrates. 
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Figure 5.12: s (solid line) and p-orbital (dashed line) projected density of states for (a) Na 
(b) K and (c) Rb in the lower portion of the conduction band near the Fermi level of the 
Na16Rb8Si136 and K16Rb8Si136 clathrates.

Figures 5.13 and 5.14 show the calculated projected density of states of the of the 

Na, Rb and Cs atoms in the Na16Rb8Ge136 and Na16Cs8Ge136 clathrates. The projected 

densities are shown in the lower part of the conduction band near the Fermi level, Ef . 

Each of them show the s-orbital character of the states near Ef. 
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Figure 5.13: s (solid line) and p-orbital (dashed line) projected density of states for (a) Na 
(b) Rb in the lower portion of the conduction band near the Fermi level of the 
Na16Rb8Ge136 clathrate. 

Figure 5.14: s (solid line) and p-orbital (dashed line) projected density of states for (a) Na 
(b) Cs in the lower portion of the conduction band near the Fermi level of the 
Na16Cs8Ge136 clathrate.  
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Based on the calculated projected densities of the different alkali metals in the Si 

and Ge clathrates, we predict that the states near the Fermi level of the filled clathrates 

will be similar to an impurity derived donor-like band, irrespective of the presence of 

sharp peaks near Ef. These donor bands have a more s-like character. As one goes higher 

in energy inside the conduction band, the s-like character decreases and the p-like 

character of the states increases. At high temperatures, thermal excitation could promote 

electrons from the s-like alkali states to the p-like framework states. This thermal 

promotion can generally lead to an Arrhenius-like behavior of the susceptibility and 

Knight shift at higher temperatures. At low temperatures, however, the electrons are more 

likely to be found in the s-like donor bands. As the electrons become more confined to 

the low-lying donor bands at low temperatures, the magnitude of the s-component wave 

function at the nucleus ( ∣ψ s 0 ∣ ) increases, resulting in an increase in the Knight shift. 

Unlike metals, which have a broad, featureless DOS at the Fermi level, we predict 

that these filled clathrates should have a highly structured DOS in that region, meaning a 

complicated electronic distribution that may vary with changing temperature. Hence, a 

variation in χ p , which also depends on the electronic configuration near the Fermi level, 

is also expected with a temperature variation. 
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CHAPTER VI

VIBRATIONAL PROPERTIES

Figure 6.1 shows the predicted phonon dispersion curves and the vibrational 

density of states (VDos) of Si136. The phonon dispersion curves and VDos of K16Rb8Si136 

and Na16Rb8Si136 are shown in Fig. 6.2. In  Si136, the acoustic phonon modes are located 

below 100 cm-1 and the optical modes lie above 100 cm-1 up to approximately 490 cm-1. 

The experimentally observed highest Γ-phonon frequency in Na1Si136 is about 484 cm-1 

[50] compared to our calculated value of  ~490 cm-1 in Si136.

Figure 6.1:  Phonon dispersion relations and vibrational density of states (VDos) of Si136.
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Figure 6.2: Phonon dispersion relations and vibrational density of states (VDos) of 
K16Rb8Si136 and Na16Rb8Si136.
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Figure 6.3 shows the predicted phonon dispersion curves and the VDos of 

Rb8Ga8Si128 and Cs8Ga8Si128, respectively. The phonon dispersion and VDos of Rb8Si136 

are shown in Fig. 6.4. 

Figures 6.2-6.4 are qualitatively similar to each other and they all share some 

common features. The acoustic modes are located below about 50 cm-1 and the optic 

modes lie above that range. The optical modes are mostly flat, except for a few in the 

range 200-280 cm-1. These flat optical modes should contribute little towards heat 

transport.

The notable feature in the dispersion curves for each of the filled clathrates is the 

compression of the band width of the highly dispersive heat carrying acoustic phonons 

from about 100 cm-1 in Si136 (Fig. 6.1), to about 50 cm-1 or lower in Na16Rb8Si136, 

K16Rb8Si136, Rb8Ga8Si128, Cs8Ga8Si128 and Rb8Si136. This is due to the very flat localized 

modes of the Rb or Cs atoms, which lie approximately at the middle of the host acoustic 

mode region. Due to an avoided crossing effect, there is a strong interaction between 

localized rattler modes and the framework acoustic branches, resulting in a “bending” of 

these acoustic branches below the guest rattler modes. This should increase the 

probability of resonant scattering of the host acoustic phonons, and thus should suppress 

the lattice thermal conductivity. 

In this context, it should be noted that, unlike Rb8Si136, the Ga substituted 

Rb8Ga8Si128 and Cs8Ga8Si128  clathrates are semiconducting, which should reduce their 

electronic contribution to the total thermal conductivity. That could mean even lower 

thermal conductivity for the framework substituted materials compared to that of Rb8Si136, 

Na16Rb8Si136 and K16Rb8Si136. 
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Figure 6.3: Phonon dispersion relations and vibrational density of states (VDos) of 
Rb8Ga8Si128 and Cs8Ga8Si128.
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Figure 6.4: Phonon dispersion relations and vibrational density of states (VDos) of 
Rb8Si136.

There is an increased VDos in Na16Rb8Si136 at the bottom of the optic band, in the 

range of 120-200 cm-1. A similar increase is found in K16Rb8Si136 in the range 140-200 

cm-1. This is due to the additional modes coming from the Na or K vibrations, which are 

absent in Rb8Ga8Si128, Cs8Ga8Si128 and Rb8Si136. 

We also find a “red shift” of the highest optical modes in Na16Rb8Si136 and 

K16Rb8Si136 compared to the pristine Si136 and the Rb8Ga8Si128 and Cs8Ga8Si128 clathrates. 

The frequency downshift for Na16Rb8Si136 is more than 30 cm-1 with respect to Si136. 

Those high frequency optic modes are due to the bond-stretching modes. 

In the rigid band picture, the donated electrons from Na (or K) and Rb in the 

metallic material Na16Rb8Si136 (or K16Rb8Si136 ) primarily occupy the Si framework 

antibonding states. These electrons reduce the Si – Si bond order, and therefore, diminish 
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the stretching force of the Si – Si bonds [60]. This reduces the frequency of the bond 

stretching modes in Na16Rb8Si136 and K16Rb8Si136, resulting in a downward shift of the 

highest modes. By contrast, Rb8Ga8Si128 and Cs8Ga8Si128 are semiconductors. In those 

materials, the donated electrons from Rb or Cs primarily occupy the bonding states of the 

substituted Ga atoms, in order to facilitate their covalent bonding with Si neighbors. 

Our LDA calculated average Si – Ga distances are about 2.37 and 2.38 Å in 

Cs8Ga8Si128 and Rb8Ga8Si128,  respectively. These are similar to the average Si – Si 

distances in the two clathrates (see Table 6.1). The slightly larger bond length between Si 

and Ga may be due to the larger atomic radius of the Ga atom. This implies that the Si – 

Ga bonds are not appreciably different than the Si – Si bonds. Therefore, the high 

frequency stretch modes should not be greatly affected in Rb8Ga8Si128 and Cs8Ga8Si128, 

which is consistent with our results. 

It has also been shown in Raman scattering experiments [76], that low guest 

content does not produce a frequency downshift in the Si136 clathrates. Consistent with 

experimental observation, we see no such frequency downshift of the optical modes in 

Rb8Si136. There are less delocalized guest atom states in the partially filled Rb8Si136 

compared to the completely filled Na16Rb8Si136 and K16Rb8Si136. Hence the high frequency 

stretch modes in that material are not as much affected as those in Na16Rb8Si136 and 

K16Rb8Si136, probably resulting in no observable frequency downshift for Rb8Si136. 
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 Table 6.1: LDA calculated nearest neighbor distances in Na16Rb8Si136, K16Rb8Si136,
 Rb8Ga8Si128, Cs8Ga8Si128 and Rb8Si136.

Clathrate Si – Si (Å) Si – Rb (Å) Si – Ga (Å) Si – Na (Å) Si – Cs (Å)

Na16Rb8Si136 2.35 - 2.38 3.90 - 3.98 - 3.17 - 3.35 -

K16Rb8Si136 2.34 - 2.39 3.89 - 3.98 - - -

Rb8Ga8Si128 2.34 - 2.40 3.92 - 3.98 2.38 - -

Cs8Ga8Si128 2.33 - 2.39 - 2.37 - 3.89 - 3.96

Rb8Si136 2.32 - 2.37 3.88 - 3.95 - - -

It is also worth comparing the predicted rattler frequencies for Rb8Ga8Si128 and 

Cs8Ga8Si128. The Rb guests are predicted to have frequencies in the range 40-42 cm-1, 

while the Cs frequencies lie within the 50-52 cm-1 range. The Rb modes are thus 

considerably lower than the Cs modes, although the Cs atom is about 1.5 times heavier 

than the Rb atom. This indicates that Cs must be more strongly bound than Rb in the 

hexakaidecahedra cages. This may be due to the larger size of the Cs in comparison with 

Rb. We have found a similar trend when we compared the predicted guest atom 

frequencies in Na16Rb8Si136 with those in Na16Cs8Si136 [28]. Both of these materials show 

localized Na modes at about 120 cm-1. The striking differences between the two 

compounds are the localized modes due to Rb and Cs. In an earlier work, it was predicted 

that the Cs atoms in Na16Cs8Si136 vibrate at frequencies in the range 65-67 cm-1 [28]. The 

present study shows that the Rb modes in Na16Rb8Si136 lie at about 49 cm-1. It is 

conceivable that the Cs atom, because of its larger size, interacts more with its neighbors, 

causing it to be more strongly bound than Rb. The stronger guest atom-host atom 

interaction for Cs in Na16Cs8Si136 is also evident from the lower experimental values of its 
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atomic displacement parameter (ADP), in comparison to that of Rb in Na16Rb8Si136 in the 

temperature region 150-300 K [30].

Figure 6.5 shows the predicted phonon dispersion curves and VDos of Ge136. For 

Ge136, the acoustic modes are below 60 cm-1 and the optic modes extend from about 60-

290 cm-1. As mentioned earlier, the optical modes do not contribute much towards heat 

transport.  

Figure 6.5: Phonon dispersion relations and vibrational density of states (VDos) of Ge136.
  

In Na16Rb8Ge136 and Na16Cs8Ge136 (Fig. 6.6) the acoustic modes are pushed below 

40 cm-1, due to the localized modes from Rb and Cs. In both the filled Ge clathrates, the 

optic bands are approximately separated into three regions. For example in Na16Cs8Ge136, 

there is a low frequency, high density of states region from about 40 cm-1 to about 80 

cm-1,  a medium frequency region extending from about 100 cm-1 to about 230 cm-1 and a 

narrow, high frequency region from about 230 cm-1 to about 250 cm-1.

53



Figure 6.6: Phonon dispersion relations and vibrational density of states (VDos) of 
Na16Rb8Ge136 and Na16Cs8Ge136.
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Like the filled Si clathrates, the Na16Rb8Ge136 and Na16Cs8Ge136 also show a “red 

shift” in their highest frequencies. The maximum optical frequency for Na16Cs8Ge136 is 

shifted down by about 40 cm-1 compared to that of Ge136. 

It must also be noted that the predicted vibrational frequency for Rb in 

Na16Rb8Ge136 (~42 cm-1) is very close to that of Cs in Na16Cs8Ge136 (~40 cm-1). The case 

of the Si clathrates showed a trend where Rb was predicted to have lower frequency than 

Cs. We do not find a similar trend in the filled Ge clathrates. 

The cages in Ge136 are slightly larger than those in Si136. To some extent this may 

compensate for the larger atomic radius of Cs compared to Rb. Also, since Cs is about 1.5 

times heavier than Rb, it is expected that Cs should have much lower vibrational 

frequency compared to that of Rb. Instead, our results show that their frequencies are 

almost the same. This means that our assumption of Cs being more strongly bound 

because of it larger size, holds even in the case of the Ge clathrates. This is supported by 

experimental data which showed that Rb in Na16Rb8Ge136 had higher ADP than Cs in 

Na16Cs8Ge136 [30]. 

Moreover, experimentally predicted values (prediction based on ADP data) of Rb 

and Cs frequencies in Na16Rb8Ge136 and Na16Cs8Ge136 seem to agree well with our 

predicted frequencies [30].

The dispersion curves for the Si and Ge clathrates are qualitatively similar. 

However, due to the heavier mass of Ge, the spectrum for the Ge clathrates are 

compressed into a smaller energy range than the Si clathrates. A rough estimate of the 

mass difference between the Si and Ge atoms reveals this effect beautifully. The Si136 

spectrum extends up to about 490 cm-1 while the Ge136 spectrum extends up to about 290 

cm-1. Therefore, 490/290 ≈ 1.69. Now, √MGe/√MSi ≈ 1.6, where MGe and MSi are the 
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atomic weights of Ge and Si respectively. The ratio of the square root of the masses of Ge 

and Si is very close to the predicted upward shift in frequency for Si136, which is about 

1.69 times that of Ge136.

6.1 Isotropic Mean Square Displacement
Amplitude (Uiso)

At temperatures where ħω < 2kBT, an estimate of the mean square displacement 

amplitude for a guest atom can be obtained in the Einstein model, by using the classical 

expression Uiso ≈ kBT/K, where K is the force constant of the oscillator and kB is the 

Boltzmann constant. The value of Uiso is particularly useful in determining the amount of 

localized disorder created by the various guest atoms inside the cages. Higher values of 

Uiso may be correlated with a lower vibrational frequency of the guests. From our 

calculated rattler frequencies, we can estimate the effective force constant using,

ω=K /M , where M is the mass of the guest atom. Our estimated values of K for Rb 

and Na in Na16Rb8Si136 are 0.76 eV/Å2 and 1.26 eV/Å2, respectively. The values of K for 

Rb and Cs in Rb8Ga8Si128 and Cs8Ga8Si128 are 0.55 eV/Å2 and 1.27 eV/Å2, respectively. 

These low values of K, when compared to a similarly computed K for Si – Si bonds in the 

clathrates (~10 eV/Å2) [27], show the weakly bounded nature of the guest atoms inside 

the cages. 

Using our calculated values of the effective force constants, we show in Table 6.2, 

our estimated values of Uiso for Na and Rb in Na16Rb8Si136 at different temperatures (T = 

150 to 300 K). Those values are also plotted as shown in Fig. 6.7 (discrete symbols). In 

the quantized harmonic oscillator model [77],

U iso=〈u2 〉=
h

8π2 mν
coth  hν

2k BT        (6.1)
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where, ν is the frequency of vibration of the oscillator, m is its reduced mass and h is the 

Planck constant. The solid curves in Fig. 6.7 show a plot of the above equation for the Na 

and Rb atoms in Na16Rb8Si136.  

Table 6.2: Estimated Uiso of Na and Rb atoms 
     in Na16Rb8Si136 at different temperatures.

Temperature (K) Uiso, Na (Å2) Uiso, Rb (Å2)

150 0.0103 0.017

200 0.0137 0.022

250 0.0171 0.028

300 0.0205 0.034

Figure  6.7:  Estimated  values  (discrete  symbols)  of  the  isotropic  mean  square 
displacement amplitude (Uiso) of the various guest atoms at different temperatures. The 
solid  lines  are  plots  of  Uiso for  Rb  and  Na  in  Na16Rb8Si136,  based  on  the  quantized 
harmonic oscillator model.
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Considering that the clathrate cages are quite rigid, we have assumed in equation 

6.1, that the reduced mass of the oscillator is equal to the guest atom mass. As seen in 

Fig. 6.7, one expects a close resemblance between the quantized and the classical model 

in the limit ħω < 2kBT. 

Our estimated values of Uiso (Table 6.2) obtained from the classical expression 

(Uiso ≈ kBT/K) and our predicted frequencies (ω), are in fairly good agreement with 

experiment [30]. Of course, our rattler frequencies are calculated at T = 0 K. This 

agreement between experiment and theory indicates that the harmonic oscillator model is 

a good approximation for predicting the Uiso of the rattlers at finite temperatures. The 

estimated Uiso for Na and Rb in Na16Rb8Si136 are expected to be within 10% of the 

experimental values. 

Figure 6.7 also shows our estimated values of Uiso (obtained from the classical 

expression) for Rb and Cs in Rb8Ga8Si128 and Cs8Ga8Si128, in the temperature range 150-

300 K. It is interesting that Rb has much higher values of Uiso than Cs in the temperature 

range considered. This is due to the larger values of K for Cs than for Rb. Cs is heavier 

and has a higher vibrational frequency, resulting in a smaller Uiso. This result is consistent 

with experimentally obtained values of Uiso for Cs and Rb in Na16Cs8Si136 and 

Na16Rb8Si136, where it has been shown that Cs has much lower values compared to Rb 

[30]. 

Figures 6.8 and 6.9 show the estimated Uiso of Na and Rb in Na16Rb8Ge136 and Na 

and Cs in Na16Cs8Ge136, respectively. The solid lines are a plot of the Uiso based on the 

quantized harmonic oscillator model (equation 6.1). The agreement between the 

quantized and classical model is very good.
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Figure 6.8: Estimated values (discrete symbols) of the isotropic mean square 
displacement amplitude (Uiso) of Na and Rb in Na16Rb8Ge136 at different temperatures. 
The solid lines are plots of Uiso based on the quantized harmonic oscillator model.

Figure 6.9: Estimated values (discrete symbols) of the isotropic mean square 
displacement amplitude (Uiso) of Na and Cs in Na16Cs8Ge136 at different temperatures. The 
solid lines are plots of Uiso based on the quantized harmonic oscillator model.
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The estimated values of Uiso for the guest atoms in Na16Cs8Ge136 shown in Table 

6.3, are not in good agreement with reported experimental data [30]. The estimated Uiso of 

Na and Rb in Na16Rb8Ge136 (Table 6.4), though not as good an agreement as in the Si 

clathrates, are close to the reported experimental values [30]. It is not clear why the 

agreement between experiment and our predicted results are not as good in the Ge 

clathrates as they are for the Si clathrates. Paradoxically, the estimated rattler frequencies 

of the Na, Rb and Cs atoms in the Ge clathrates reported from the ADP data are in much 

better agreement with our predicted frequencies [30]. Given that our calculations are 

based on the harmonic approximation, this probably means that there is a greater 

anharmonic contribution to the ADP of these atoms in the Ge clathrates which results in 

the mismatch between the predicted and experimental data.

     Table 6.3: Estimated Uiso of Na and Cs atoms 
     in Na16Cs8Ge136 at different temperatures.

Temperature (K) Uiso, Na (Å2) Uiso, Cs (Å2)

150 0.0132 0.0166

200 0.0176 0.0221

250 0.022 0.0276

300 0.0264 0.0332

Table 6.4: Estimated Uiso of Na and Rb atoms 
     in Na16Rb8Ge136 at different temperatures.

Temperature (K) Uiso, Na (Å2) Uiso, Rb (Å2)

150 0.0117 0.0233

200 0.0156 0.031

250 0.0196 0.0388

300 0.0235 0.0465
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With our estimated values of Uiso at 300 K, we have predicted the Einstein 

temperatures (θE) of the various guest atoms using, 

Uiso = kBT/K = h2T/(4π2mkB θE
2)       (6.2)

The predicted values for guests in various Si and Ge clathrates are shown in Table 6.5. 

The calculated values of Uiso at 300 K were used to predict θE.  The high value of θE  for 

Na in the different Si and Ge clathrates is consistent with its lower Uiso and its smaller 

mass.

In a recent paper [78], it has been suggested that the glass-like thermal 

conductivity in clathrates is a consequence of three different phonon scattering 

mechanisms. It was shown, based on empirical evidence, that the phonons scattered from 

free charge carriers and bound/localized charge carriers were the dominant scattering 

mechanisms at temperatures below 50 K, and that the resonant scattering of host phonons 

by guest atoms occurred at temperatures above 50-70 K [78]. It is interesting that all of 

our estimated values of θE of the various guests are above 50 K. This may also imply that 

the resonant scattering of host phonons would be dominant at temperatures above 50 K.

Table 6.5: Predicted Einstein temperatures (θE), of the various 
guest atoms in Na16Rb8Si136, Rb8Ga8Si128, Cs8Ga8Si128, 

Na16Rb8Ge136 and Na16Cs8Ge136.

Clathrate θE,Na (K) θE.Rb (K) θE,Cs (K) 

Na16Rb8Si136 175 70.5 -

Rb8Ga8Si128 - 60 -

Cs8Ga8Si128 - - 73

Na16Rb8Ge136 164 60.5 -

Na16Cs8Ge136 155.5 - 57.6
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CHAPTER VII

THERMODYNAMIC PROPERTIES OF

Si136 AND Ge136

First principles theoretical methods have been used here to predict the temperature 

dependence of the vibrational contributions to the free energy, the entropy and the 

specific heat capacity at constant volume (CV) of the empty Si136 and Ge136 clathrates. All 

quantities are predicted using the harmonic approximation. Because most experiments are 

conducted at constant pressure, it would be more relevant to calculate the Gibbs free 

energy. However, the Helmholtz free energy has been calculated in this study. Like most 

semiconductors, these type II clathrates also have a low coefficient of thermal expansion. 

Si136, for example, is reported to have a thermal expansion coefficient which is less than 

4x10-6 K-1 up to a temperature of about 800 K [79]. Therefore, the difference between the 

specific heat at constant pressure and at constant volume (CP – CV) should not be too large 

and it may be appropriate to compare calculated CV with experimental CP data. The 

difference between the two heat capacities is given by the equation,  CP – CV = α2TVK, 

where α is the temperature dependent volume coefficient of thermal expansion and K is 

the bulk modulus.

The Helmholtz free energy is given by,

F (T) = Estatic + Fvib (T)             (7.1)

where, Estatic is the static lattice energy when all atoms are fixed at their lattice positions 

and Fvib (T) is the vibrational free energy. Figure 7.1(a, b) shows the predicted 

temperature dependence of the vibrational free energies Fvib (T), of Si136 and Ge136 in the 

range 0-600 K. 

62



Figure 7.1: Predicted temperature dependence of vibrational free energy of (a) Si136 and 
(b) Ge136 in the range 0-600 K.

Recently, Miranda et al. [80] reported the Gibbs free energy of the Si136 clathrate. 

Their calculations were based on the reversible scaling Monte Carlo (RS-MC) method 
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[80]. Although a direct comparison between Helmholtz and Gibbs free energy is not 

possible, our calculated zero-point energy Fvib (T = 0), of about 0.062 eV/atom agree with 

that reported by Miranda et al. (see Fig. 1 in Ref. 80).

Figures 7.2 and 7.3 shows the calculated vibrational entropies of Si136 and Ge136 as 

a function of temperature. There is a large entropy difference between the Si136 and Ge136 

clathrates. The temperature variation of the entropy of Si136 is in good agreement with the 

LDA results reported recently by Tang et al. [79].

One notable feature is the close proximity of the entropy values of each clathrate 

with their respective diamond phases. The predicted entropies of both Si136 and Ge136 are 

slightly higher than their corresponding diamond phases. This is expected because the 

open framework structure of the clathrates should lead to a larger vibrational entropy. The 

experimental values of the entropy of diamond structured Ge (d-Ge) and d-Si [81] and the 

predicted entropies of Si136 and Ge136 at 300 K are shown in Table 7.1.

Miranda et al. [80] also reported calculations of the vibrational entropy of Si136 

between the temperatures 0 to 2000 K. Their results are in good agreement with our 

calculations. For example, their calculated value of the vibrational entropy of Si136 at 1522 

K (predicted melting point of Si136) was 62.9 J/mole-K, compared to our predicted value 

of 61.0 J/mole-K at 1521 K.
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Figure 7.2: Predicted vibrational entropy of Si136 in the temperature range 0-600 K. 

Figure 7.3: Predicted vibrational entropy of Ge136 in the temperature range 0-600 K.
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          Table 7.1: Predicted entropies of Si136 and Ge136 
          at 300 K, and the corresponding experimental 
          values of d-Si and d-Ge at the same temperature 
          [81].

Si136 Theory 19.75  J/mole-K

d-Si Expt. 18.82  J/mole-K

Ge136 Theory 32.63  J/mole-K

d-Ge Expt. 31.23  J/mole-K

As mentioned before, the difference CP – CV is expected to be low for the 

clathrates, so that a comparison of the predicted CV with experimental CP should be 

qualitatively meaningful. Figure 7.4 shows the temperature dependence of predicted CV 

of Si136 (solid line) in the range 0-300 K. 

Figure 7.4: Calculated specific heat (CV) (solid line) and measured isobaric specific heat 
(CP) (discrete symbols) of Si136 in the range 0-300 K [58].
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Nolas et al. has measured the CP of Si136 up to 300 K [51]. Those initial data were 

not in good agreement with our calculated values. However, that group recently 

remeasured the CP of Si136 and their updated results [58] are in better agreement as shown 

in Fig. 7.4.

The calculated CV of Si136 is found to be slightly larger than the experimental CP of 

d-Si up to about 270 K. Since CP is greater than CV, it is predicted that the clathrate phase 

of Si has higher specific heat (by about 0.33 J/mole-K) than that of d-Si at about 200 K 

[82]. At higher temperatures the predicted values are supposed to deviate from actual 

values because of the increase in anharmonicity of the different vibrational modes.  

The temperature dependence of the calculated CV of Ge136 is shown in Fig. 7.5. 

Here again, Ge136 is predicted to have slightly larger values of specific heat compared to 

d-Ge at least up to 200 K (21.22 J/mole-K for Ge136 at 200K compared to 20.88 J/mole-K 

for d-Ge at th same temperature) [83]. Currently, there are no experimental data available 

on the specific heat capacity of Ge136.  

Figure 7.4: Calculated specific heat (CV) of Ge136 in the range 0-300 K.
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CHAPTER VIII

CONCLUSIONS

Group IV semiconductor clathrates have emerged as an interesting class of 

materials, with potential applications in the field of thermoelectrics. They are very 

interesting from a fundamental physics view point, which was the basis for this research. 

We have used the LDA to study the equations of state, electronic, vibrational and the 

thermodynamic properties of several type II clathrate materials.

The electronic band structures of the filled clathrates agree qualitatively with the 

rigid band model. Our results show that the bands for non-framework substituted guest 

containing materials are nearly the same as those of the guest free materials and that there 

is a charge transfer from the guests into the host conduction states. This raises the Fermi 

level into the conduction band of the Na16Rb8Si136, K16Rb8Si136, Na16Rb8Ge136, and the 

Na16Cs8Ge136 clathrates, as discussed in Chapter V. 

The electronic density of states (DOS) near the Fermi level of the Na16Rb8Si136, 

K16Rb8Si136, Na16Rb8Ge136, and the Na16Cs8Ge136 clathrates also show a charge transfer 

from the different guest atoms to the Si or Ge framework. The DOS near the Fermi level 

is higher for these filled clathrates compared to Si136  or Ge136. However, for the 

framework substituted Rb8Ga8Si128 and Cs8Ga8Si128 clathrates there is no such increase in 

DOS. This is due to the unpaired p-orbitals in the Ga atoms. 

We predict that Rb8Ga8Si128 and Cs8Ga8Si128 are semiconducting with indirect 

LDA band gaps approximately in the range 0.73-0.77 eV. Thus framework substitution 

may help to reduce the electronic contribution to the total thermal conductivity. A 
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comparison of the DOS of Rb8Ga8Si128 with those of Rb8Si136 also emphasizes the role of 

Ga-substitution.

The calculated projected densities of states of the Na16Rb8Si136, K16Rb8Si136, 

Na16Rb8Ge136, and the Na16Cs8Ge136 clathrates qualitatively explain the observed 

temperature dependent Knight shift. The results show the s-like character of the states 

near the Fermi level of these materials, irrespective of the presence of peak-like structures 

in the DOS. Na16Rb8Si136 and K16Rb8Si136 do show peaks near the Fermi level. However, 

the peak separation (200-400 meV) is much larger than the kBT at which the temperature 

dependent Knight shifts have been observed. The predominance of the donor derived s-

like states in the lower portion of the conduction band is the more likely reason for the 

observed temperature dependent shifts.

All the filled clathrates are predicted to have low frequency guest vibrational 

modes that are near the middle of the host acoustic band, which effectively compresses 

the acoustic mode band width. This implies an efficient scattering of the host acoustic 

phonons, which is essential for reducing the lattice thermal conductivity. 

Even though Cs is heavier than Rb, in the case of the Si clathrates we predict that 

Rb has a lower vibrational frequency than Cs. This could mean a more efficient phonon 

scattering mechanism for Rb than Cs. 

Compared to Si136 and Ge136, there is a frequency down-shift in the highest optical 

phonon modes for the Na16Rb8Si136, K16Rb8Si136, Na16Rb8Ge136, and the Na16Cs8Ge136 

clathrates. This is due to the antibonding character of the states occupied by the electrons 

from the donor guest atoms. More interestingly, the phonon dispersion curves of the 

Rb8Ga8Si128 and Cs8Ga8Si128 clathrates do not show such a large frequency downshift. 
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This is because the electrons from the guest atoms now occupy the bonding states of the 

unpaired p-orbitals of the Ga atoms.   

Our estimated temperature-dependent values of the mean square displacement 

amplitude (Uiso) for Rb and Na in Na16Rb8Si136 agree well with experiment, meaning that 

the anharmonic contributions up to 300 K are small. As expected from our calculated 

frequencies, we predict higher values of Uiso for Rb in Rb8Ga8Si128 than Cs in Cs8Ga8Si128. 

The agreement between the estimated Uiso and the experimental values is not as good in 

the Ge clathrates. However, these values are consistent with the trend where Rb is shown 

to have higher values of Uiso and hence higher localized disorder than the heavier Cs 

atoms. 

The vibrational contributions to the thermodynamic properties of the Si136 and 

Ge136 clathrates bear close resemblance to those of their respective diamond phases. A 

comparison of the predicted temperature dependence of the free energy shows that Si136 is 

more stable than the Ge136 phase. The vibrational entropies of Si136 and Ge136 are slightly 

higher than those of their corresponding diamond phases. Temperature dependent heat 

capacities of Si136 and Ge136 are also predicted to be higher than those in the respective 

diamond phases.

Finally, the present work can be summarized as follows:

1) Non-framework substituted filled clathrates:

a) there is a charge transfer from guest atom to host conduction band (metallic 

 character)

b) s-orbital character of the states near Ef (derived from guest electrons) provides 

 a qualitative explanation of the observed temperature dependence of the Knight 

  shifts.
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2) Framework substituted filled clathrates:

a) these are semiconducting due to the unpaired valence electrons in Ga; 

 semiconducting behavior is useful in reducing the electronic contribution to the 

 total thermal conductivity

b) LDA band gap reduced in comparison to the empty Si136. This is likely due to 

 the Ga p-states near the top of the valence band and guest atom s-states near the 

 bottom of the conduction band.

3) Harmonic approximation may be used to theoretically estimate the atomic 

displacement parameter of the various guest atoms (Uiso).

4) Rb is predicted to have lower vibrational frequency and higher Uiso than Cs; Rb 

may be a more efficient rattler compared to Cs.

5) The Si and Ge clathrate phases have higher entropy and higher heat capacity than 

their corresponding diamond phases.
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