UNIT 5 EXERCISES

1) A skier has just begun descending a 30° slope. Assuming the coefficient of kinetic friction is 0.10 ,
a) draw a force diagram
b) find her acceleration
c) suppose, instead the snow is slushy and she moves down the hill at a constant speed. What will the coefficient of kinetic friction be? Show your work.
2) Determine the net compressive force acting on the patella as a result of the action of the quadriceps muscle (F_{m} upward) and the patellar tendon (F_{t} downward) as shown in the diagram below. Take the angle between the muscle group and the tendon to be 160°, and assume the leg is bent symmetrically so that $\mathrm{F}_{\mathrm{m}}=\mathrm{F}_{\mathrm{t}}=100 \mathrm{~N}$. Show your work.

3) The diagram below shows two masses free to move, $\mathrm{M}=50 \mathrm{~kg}$ and $\mathrm{m}=20 \mathrm{~kg}$, connected by a massless cable on two frictionless pulleys.

a) Draw a force diagram for each mass.
b) Are the masses accelerating? Compare the acceleration of mass M and mass m. Explain.
c) Find the tensile force in the cable. Show your work.
d) Find the acceleration of each mass. Show your work.
